2023-2024学年湖南省湘西九年级数学第一学期期末经典试题含答案
展开
这是一份2023-2024学年湖南省湘西九年级数学第一学期期末经典试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.将抛物线向上平移个单位长度,再向右平移个单位长度,所得到的抛物线为( )
A.B.
C.D.
2.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为( )
A.30°B.40°C.45°D.50°
3.如图,是的直径,点是上两点,且,连接,过点作,交的延长线于点,垂足为,若,则的半径为( )
A.B.C.D.
4.某车间20名工人日加工零件数如表所示:
这些工人日加工零件数的众数、中位数、平均数分别是( )
A.5、6、5B.5、5、6C.6、5、6D.5、6、6
5.关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是( )
①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).
A.1B.2C.3D.4
6.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于( )
A.B.C.D.无法确定
7.如图,将矩形纸片ABCD折叠,使点A落在BC上的点F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是( )
A.邻边相等的矩形是正方形
B.对角线相等的菱形是正方形
C.两个全等的直角三角形构成正方形
D.轴对称图形是正方形
8.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )
A.B.C.D.
9.如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是( )
A.3B.4C.4.8D.5
10.若函数其几对对应值如下表,则方程(,,为常数)根的个数为( )
A.0B.1C.2D.1或2
11.下列语句,错误的是( )
A.直径是弦B.相等的圆心角所对的弧相等
C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦
12.如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC =" 4" cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是( ).
A.相离B.相切C.相交D.相切或相交
二、填空题(每题4分,共24分)
13.定义:在平面直角坐标系中,我们将函数的图象绕原点逆时针旋转后得到的新曲线称为“逆旋抛物线”.
(1)如图①,己知点,在函数的图象上,抛物线的顶点为,若上三点、、是、、旋转后的对应点,连结,、,则__________;
(2)如图②,逆旋抛物线与直线相交于点、,则__________.
14.如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为(1,0),以为圆心,为半径画圆,交直线于点,交轴正半轴于点,以为圆心,为半径的画圆,交直线于点,交轴的正半轴于点,以为圆心,为半径画圆,交直线与点,交轴的正半轴于点,… 按此做法进行下去,其中弧的长为_______.
15. “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
16.如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB的大小是___.
17.如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为_____.
18.如图,,请补充—个条件:___________,使(只写一个答案即可).
三、解答题(共78分)
19.(8分)如图①,是一张直角三角形纸片,∠B=90°,AB=12,BC=8,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.
(1)请通过计算说明小明的猜想是否正确;
(2)如图②,在△ABC中,BC=10,BC边上的高AD=10,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求矩形PQMN面积的最大值;
(3)如图③,在五边形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
20.(8分)用你喜欢的方法解方程
(1)x2﹣6x﹣6=0
(2)2x2﹣x﹣15=0
21.(8分)小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用,表示这两个看不清的数字,那么小李的号码为(手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.
(1)求的值;
(2)求出小王一次拨对小李手机号的概率.
22.(10分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,
(1)求抛物线的解析式;
(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.
①求此时m的值.
②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
23.(10分)已知抛物线经过点,,与轴交于点.
(1)求这条抛物线的解析式;
(2)如图,点是第三象限内抛物线上的一个动点,求四边形面积的最大值.
24.(10分)车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.
(1)一辆车经过此收费站时,A通道通过的概率为 ;
(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.
25.(12分)在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O的“随心点”.
(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“随心点”是 ;
(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;
(3)当⊙O的半径r=2时,直线y=- x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围 .
26.(12分)如图,一次函数y=﹣x+5的图象与坐标轴交于A,B两点,与反比例函数y=的图象交于M,N两点,过点M作MC⊥y轴于点C,且CM=1,过点N作ND⊥x轴于点D,且DN=1.已知点P是x轴(除原点O外)上一点.
(1)直接写出M、N的坐标及k的值;
(2)将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由;
(3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以P、S、M、N四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S的坐标;若不存在,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、D
4、D
5、B
6、C
7、A
8、C
9、D
10、C
11、B
12、B
二、填空题(每题4分,共24分)
13、3;
14、.
15、57.5
16、20°.
17、k=
18、∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE(填一个即可).
三、解答题(共78分)
19、(1)正确,理由见解析;(2)当a=5时,S矩形MNPQ最大为25;(3)矩形的最大面积为1.
20、(1)x1=1+,x2=1﹣;(2)x1=﹣2.5,x2=1
21、(1)14;(2).
22、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为
23、(1);(2)1
24、(1);(2)
25、 (1) A,C ;(2);(3) 1≤b≤或-≤b≤-1.
26、(1)M(1,4),N(4,1),k=4;(2)(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2);(3)(,5)或(,3).
日加工零件数
4
5
6
7
8
人数
2
6
5
4
3
相关试卷
这是一份湖南省株洲市攸县2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了把一副三角板如图等内容,欢迎下载使用。
这是一份湖南省株州市2023-2024学年数学九年级第一学期期末经典试题含答案,共8页。试卷主要包含了抛物线的对称轴是,某同学用一根长为,关于抛物线,下列结论中正确的是,一元二次方程的根的情况是等内容,欢迎下载使用。
这是一份2023-2024学年湖南省怀化市数学九年级第一学期期末经典模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,正方形具有而菱形不具有的性质是,已知关于x的一元二次方程x2+,下列函数是二次函数的是.等内容,欢迎下载使用。