2023-2024学年湖南省邵阳市新邵县数学九年级第一学期期末经典试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.一元二次方程的解的情况是( )
A.无解B.有两个不相等的实数根
C.有两个相等的实数根D.只有一个解
2.方程的解是( ).
A.x1=x2=0B.x1=x2=1C.x1=0, x2=1D.x1=0, x2=-1
3.图中的两个梯形成中心对称,点P的对称点是( )
A.点AB.点BC.点CD.点D
4.如图,某物体由上下两个圆锥组成,其轴截面中,,.若下部圆锥的侧面积为1,则上部圆锥的侧面积为( )
A.B.C.D.
5.如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为( )
A.B.C.D.
6.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于( )
A.B.2C.1.5D.
7.如图,在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形图,如果要使整个挂图的面积是,设金色纸边的宽为,那么满足的方程是( )
A.B.
C.D.
8.把抛物线向右平移个单位,再向上平移个单位,得到的抛物线是( )
A.B.C.D.
9.如果圆锥的底面半径为3,母线长为6,那么它的侧面积等于( )
A.9πB.18πC.24πD.36π
10.如图所示是滨河公园中的两个物体一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是( )
A.(3)(4)(1)(2)B.(4)(3)(1)(2)
C.(4)(3)(2)(1)D.(2)(4)(3)(1)
11.下列几何体中,同一个几何体的主视图与左视图不同的是( )
A.B.C.D.
12.下列判断正确的是( )
A.对角线互相垂直的平行四边形是菱形B.两组邻边相等的四边形是平行四边形
C.对角线相等的四边形是矩形D.有一个角是直角的平行四边形是正方形
二、填空题(每题4分,共24分)
13.等腰三角形底边所对的外接圆的圆心角为140°,则其顶角的度数为______.
14.已知关于的方程的一个解为,则m=_______.
15.三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是 .
16.小明与父母国庆节从杭州乘动车回台州,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是_________.
17.小北同学掷两面质地均匀硬币,抛5次,4次正面朝上,则掷硬币出现正面概率为_____.
18.已知,.且,设,则的取值范围是______.
三、解答题(共78分)
19.(8分)如图,AB是的直径,点C,D在上,且BD平分∠ABC.过点D作BC的垂线,与BC的延长线相交于点E,与BA的延长线相交于点F.
(1)求证:EF与相切:
(2)若AB=3,BD=,求CE的长.
20.(8分)如图,已知抛物线经过坐标原点和轴上另一点,顶点的坐标为.矩形的顶点与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=1.
(1)求该抛物线所对应的函数关系式;
(2)将矩形以每秒个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动,设它们运动的时间为秒,直线与该抛物线的交点为(如图2所示).
①当,判断点是否在直线上,并说明理由;
②设P、N、C、D以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
21.(8分) [问题发现]
如图①,在中,点是的中点,点在边上,与相交于点,若,则_____ ;
[拓展提高]
如图②,在等边三角形中,点是的中点,点在边上,直线与相交于点,若,求的值.
[解决问题]
如图③,在中,,点是的中点,点在直线上,直线与直线相交于点,.请直接写出的长.
22.(10分)某校九年级学生某科目学期总评成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果学期总评成绩80分以上(含80分),则评定为“优秀”,下表是小张和小王两位同学的成绩记录:
若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定学期总评成绩.
(1)请计算小张的学期总评成绩为多少分?
(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
23.(10分)如图,在Rt△ABC中,∠ABC=90º,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.
(1)求证:AE=CE .
(2)若EF与⊙O相切于点E,交AC的延长线于点F,且CD=CF=2cm,求⊙O的直径.
(3)若EF与⊙O相切于点E,点C在线段FD上,且CF:CD=2:1,求sin∠CAB .
24.(10分)在平面直角坐标系中,直线与反比例函数的图象的两个交点分别为点(,)和点.
(1)求的值和点的坐标;
(2)如果点为轴上的一点,且∠直接写出点A的坐标.
25.(12分)如图①,是一张直角三角形纸片,∠B=90°,AB=12,BC=8,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.
(1)请通过计算说明小明的猜想是否正确;
(2)如图②,在△ABC中,BC=10,BC边上的高AD=10,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求矩形PQMN面积的最大值;
(3)如图③,在五边形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
26.(12分)某区为创建《国家义务教育优质均衡发展区》,自2016年以来加大了教育经费的投入,2016年该区投入教育经费9000万元,2018年投入教育经费12960万元,假设该区这两年投入教育经费的年平均增长率相同
(1)求这两年该区投入教育经费的年平均增长率
(2)若该区教育经费的投入还将保持相同的年平均增长率,请你预算2019年该区投入教育经费多少万元
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、C
4、C
5、A
6、B
7、B
8、A
9、B
10、C
11、A
12、A
二、填空题(每题4分,共24分)
13、70°或110°.
14、0
15、24或.
16、
17、
18、
三、解答题(共78分)
19、(1)证明见解析;(2).
20、(1)y=-x2+4x;(2)点P不在直线MB上,理由见解析;②当t=时,以点P,N,C,D为顶点的多边形面积有最大值,这个最大值为.
21、 [问题发现];[拓展提高];[解决问题]或.
22、(1)小张的期末评价成绩为81分.(2)最少考85分才能达到优秀
23、(1)见解析;(2)2cm;(3)
24、(1)k=1,Q(-1,-1).(2)
25、(1)正确,理由见解析;(2)当a=5时,S矩形MNPQ最大为25;(3)矩形的最大面积为1.
26、(1)20%;(2)15552万元
完成作业
单元测试
期末考试
小张
70
90
80
小王
60
75
_______
湖南省新邵县2023-2024学年九年级数学第一学期期末监测试题含答案: 这是一份湖南省新邵县2023-2024学年九年级数学第一学期期末监测试题含答案,共8页。试卷主要包含了已知等内容,欢迎下载使用。
湖南省邵阳市新宁县2023-2024学年九年级数学第一学期期末经典试题含答案: 这是一份湖南省邵阳市新宁县2023-2024学年九年级数学第一学期期末经典试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,用配方法解方程,方程应变形为,下列说法正确的是等内容,欢迎下载使用。
湖南省邵阳市新邵县2023-2024学年八上数学期末监测模拟试题含答案: 这是一份湖南省邵阳市新邵县2023-2024学年八上数学期末监测模拟试题含答案,共7页。试卷主要包含了下列图标中轴对称图形的个数是,对于,,,,,,其中分式有,若,则等内容,欢迎下载使用。