2023-2024学年湖北省武汉新洲区五校联考九上数学期末统考试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.已知二次函数的图象与轴的一个交点为(-1,0),对称轴是直线,则图象与轴的另一个交点是( )
A.(2,0)B.(-3,0)C.(-2,0)D.(3,0)
2.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.
其中合理的是( )
A.①B.②C.①②D.①③
3.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为,则得方程( )
A.B.
C.D.
4.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价为元,则可列方程为( )
A.B.
C.D.
5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )
A.560(1+x)2=315B.560(1-x)2=315
C.560(1-2x)2=315D.560(1-x2)=315
6.从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是( )
A.B.C.D.
7.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是( )
A.64B.16C.24D.32
8.下列说法:
四边相等的四边形一定是菱形
顺次连接矩形各边中点形成的四边形一定是正方形
对角线相等的四边形一定是矩形
经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
其中正确的有 个.
A.4B.3C.2D.1
9.如图,在平面直角坐标系中,点在函数的图象上,点在函数的图象上,轴于点.若,则的值为( )
A.B.C.D.
10.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为( )
A.相交B.相切C.相离D.无法确定
11.某楼盘的商品房原价12000元/,国庆期间进行促销活动,经过连续两次降价后,现价9720元/,求平均每次降价的百分率。设平均每次降价的百分率为,可列方程为( )
A.B.
C.D.
12.抛物线与坐标轴的交点个数是( )
A.3B.2C.1D.0
二、填空题(每题4分,共24分)
13.甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是_____(填甲或乙)
14.圆内接正六边形一边所对的圆周角的度数是__________.
15.半径为的圆中,弦、的长分别为2和,则的度数为_____.
16.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为__
17.若代数式有意义,则的取值范围是____________.
18.设x1、x2是方程x﹣x﹣1=0的两个实数根,则x1+x2=_________.
三、解答题(共78分)
19.(8分)某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和m的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。
20.(8分)如图,在中,,是斜边上的中线,以为直径的分别交、于点、,过点作,垂足为.
(1)若的半径为,,求的长;(2)求证:与相切.
21.(8分)在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.
(1)直接写出:b的值为 ;c的值为 ;点A的坐标为 ;
(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.
①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;
②若△CDM为等腰直角三角形,直接写出点M的坐标 .
22.(10分)如图,已知EC∥AB,∠EDA=∠ABF.
(1)求证:四边形ABCD是平行四边形;
(2)求证:=OE•OF.
23.(10分)在平行四边形ABCD中,点E是AD边上的点,连接BE.
(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;
(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.
24.(10分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.
25.(12分)已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).
(1)分别求出这两个函数的解析式;
(2)当x取什么范围时,反比例函数值大于0;
(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;
(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.
26.(12分)如图,在平面直角坐标系中,抛物线 的顶点为,且经过点与轴交于点,连接,,.
(1)求抛物线对应的函数表达式;
(2)点为该抛物线上点与点之间的一动点.
①若,求点的坐标.
②如图②,过点作轴的垂线,垂足为,连接并延长,交于点,连接延长交于点.试说明为定值.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、C
4、A
5、B
6、B
7、D
8、C
9、A
10、B
11、D
12、A
二、填空题(每题4分,共24分)
13、甲
14、30°或150°
15、或
16、1
17、x≥1且x≠1
18、1
三、解答题(共78分)
19、(1)50,12;(2)5,4;(3)336.
20、(1);(2)见解析.
21、(1)﹣;﹣1;(﹣1,0);(1)①MD=(﹣m1+4m),DM最大值;②(,﹣)或(,﹣).
22、(1)证明见解析;(2)证明见解析.
23、(1)26;(2)见解析
24、(1)y=x2;(2)证明见解析;(3)(,3)或(﹣,3).
25、(1)y=,y=2x﹣3;(2)x>1;(3)x<﹣1.5或1<x<2;(4)点P′在直线上.
26、(1);(2)①点的坐标为,;②,是定值.
湖北省武汉蔡甸区五校联考2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份湖北省武汉蔡甸区五校联考2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了下列图形,下列运算中,计算结果正确的是,近视镜镜片的焦距y等内容,欢迎下载使用。
湖北省武汉市新洲区2023-2024学年九上数学期末监测模拟试题含答案: 这是一份湖北省武汉市新洲区2023-2024学年九上数学期末监测模拟试题含答案,共8页。试卷主要包含了已知点等内容,欢迎下载使用。
湖北省武汉东湖高新区六校联考2023-2024学年数学九上期末统考模拟试题含答案: 这是一份湖北省武汉东湖高新区六校联考2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了下列事件中是必然事件的是等内容,欢迎下载使用。