2023-2024学年安徽省十学校九年级数学第一学期期末学业水平测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,将绕点按逆时针方向旋转后得到,若,则的度数是( )
A.B.C.D.
2.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为( )
A.B.C.D.
3.如图,抛物线y=ax2+bx+c交x轴分别于点A(﹣3,0),B(1,0),交y轴正半轴于点D,抛物线顶点为C.下列结论
①2a﹣b=0;
②a+b+c=0;
③当m≠﹣1时,a﹣b>am2+bm;
④当△ABC是等腰直角三角形时,a=;
⑤若D(0,3),则抛物线的对称轴直线x=﹣1上的动点P与B、D两点围成的△PBD周长最小值为3,其中,正确的个数为( )
A.2个B.3个C.4个D.5个
4.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是( )
A.B.C.D.
5.化简的结果是( )
A.B.C.D.
6.如图,在△ABC中,点D在边AB上,且AD=5cm,DB=3 cm,过点D作DE∥BC,交边AC于点E,将△ADE沿着DE折叠,得△MDE,与边BC分别交于点F,G.若△ABC的面积为32 cm2,则四边形DEGF的面积是( )
A.10 cm2B.10.5 cm2C.12 cm2D.12.5 cm2
7.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=,∠C=45°,tan∠ABC=3,则BD等于( )
A.2B.3C.D.
8.如图,、是的两条弦,若,则的度数为( )
A.B.C.D.
9.张华同学的身高为米,某一时刻他在阳光下的影长为米,同时与他邻近的一棵树的影长为米,则这棵树的高为()
A.米B.米C.米D.米
10.已知关于x的一元二次方程x2+3x﹣2=0,下列说法正确的是( )
A.方程有两个相等的实数根B.方程有两个不相等的实数根
C.没有实数根D.无法确定
11.的值等于( )
A.B.C.1D.
12.若点P(﹣m,﹣3)在第四象限,则m满足( )
A.m>3B.0<m≤3C.m<0D.m<0或m>3
二、填空题(每题4分,共24分)
13.点(﹣1,)、(2,)是直线上的两点,则 (填“>”或“=”或“<”)
14.已知m为一元二次方程x²-3x-2020=0的一个根,则代数式2m²-6m+2的值为___________
15.如图,在菱形ABCD中,AE⊥BC,E为垂足,若csB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是________.
16.已知点,都在反比例函数图象上,则____(填“”或“”或“”).
17.过⊙O内一点M的最长弦为10cm,最短弦为8cm,则OM= cm.
18.某“中学生暑期环保小组”的同学,随机调查了“金沙绿岛”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区500户家庭一周内需要环保方便袋__________只.
三、解答题(共78分)
19.(8分)如图,已知抛物线y1=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.
(1)△ABC是 三角形;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)结合图象,写出满足y1>y2时,x的取值范围 .
20.(8分)在等边中,点为上一点,连接,直线与分别相交于点,且.
(1)如图(1),写出图中所有与相似的三角形,并选择其中的一对给予证明;
(2)若直线向右平移到图(2)、图(3)的位置时,其他条件不变,(1)中的结论是否仍然成立?若成立请写出来(不证明),若不成立,请说明理由;
(3)探究:如图(1),当满足什么条件时(其他条件不变),?请写出探究结果,并说明理由(说明:结论中不得含有未标识的字母).
21.(8分)如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
22.(10分)解方程:
(1)x2-3x+1=1;
(2)x(x+3)-(2x+6)=1.
23.(10分)如图,点在以为直径的上,的平分线交于点,过点作的平行线交的延长线于点.
(1)求证:是的切线;
(2)若,,求的长度.
24.(10分)将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=OB=20cm,B′O′⊥OA,垂足为C.
(1)求点O′的高度O′C;(精确到0.1cm)
(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)
(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?
参考数据:(sin65°=0.906,cs65°=0.423,tan65°=2.1.ct65°=0.446)
25.(12分)已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;
(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.
26.(12分)(特例感知)
(1)如图①,∠ABC 是⊙O 的圆周角,BC 为直径,BD 平分∠ABC 交⊙O 于点 D,CD=3, BD=4,则点 D 到直线 AB 的距离为 .
(类比迁移)
(2)如图②,∠ABC 是⊙O 的圆周角,BC 为⊙O 的弦,BD 平分∠ABC 交⊙O 于点 D,过 点 D 作 DE⊥BC,垂足为 E,探索线段 AB、BE、BC 之间的数量关系,并说明理由.
(问题解决)
(3)如图③,四边形 ABCD 为⊙O 的内接四边形,∠ABC=90°,BD 平分∠ABC,BD= 7, AB=6,则△ABC 的内心与外心之间的距离为 .
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、D
4、A
5、D
6、B
7、A
8、C
9、A
10、B
11、A
12、C
二、填空题(每题4分,共24分)
13、<.
14、1
15、4.2
16、
17、3
18、3500
三、解答题(共78分)
19、(1)直角;(2)P(,);(3)0<x<1.
20、(1) △BPF∽△EBF,△BPF∽△BCD;(2)均成立,分别为△BPF∽△EBF,△BPF∽△BCD,(3)当BD平分∠ABC时,PF=PE.
21、(1)y=-x2+4x+5(2)m的值为7或9(3)Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5)
22、(4)x4=,x2=;(2)x4=-3,x2=2.
23、(1)见解析;(2)
24、(1)8.5cm;(2)显示屏的顶部B′比原来升高了10.3cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转25度.
25、(1)y= x2﹣x﹣4;(2)S=﹣(m﹣2)2+16,S的最大值为16;(3)点P的坐标为:(1,﹣1+)或(1,﹣1﹣).
26、(1)(2)AB+BC=2BE(3)
2023-2024学年广东茂名市直属学校数学九年级第一学期期末学业水平测试模拟试题含答案: 这是一份2023-2024学年广东茂名市直属学校数学九年级第一学期期末学业水平测试模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,下列各组图形中,一定相似的是,一元二次方程的根的情况是等内容,欢迎下载使用。
2023-2024学年安徽省宁国市宁阳学校九年级数学第一学期期末学业水平测试模拟试题含答案: 这是一份2023-2024学年安徽省宁国市宁阳学校九年级数学第一学期期末学业水平测试模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,为一元二次方程的是,下列事件中,属于必然事件的是,如果,那么的值为等内容,欢迎下载使用。
2023-2024学年安徽省合肥市行知学校九上数学期末学业水平测试模拟试题含答案: 这是一份2023-2024学年安徽省合肥市行知学校九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,若,则的值等于等内容,欢迎下载使用。