2023-2024学年江苏省无锡市阳山中学九上数学期末学业质量监测试题含答案
展开
这是一份2023-2024学年江苏省无锡市阳山中学九上数学期末学业质量监测试题含答案,共8页。试卷主要包含了下列说法中正确的有等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.下列事件是随机事件的是( )
A.画一个三角形,其内角和是B.射击运动员射击一次,命中靶心
C.投掷一枚正六面体骰子,朝上一面的点数小于D.在只装了红球的不透明袋子里,摸出黑球
2.若一次函数的图象不经过第二象限,则关于的方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定
3.如图是二次函数y=ax1+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b1>4ac;②1a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y1)为函数图象上的两点,则y1<y1.其中正确结论是( )
A.②④B.①③④C.①④D.②③
4.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为( )
A.B.C.D.
5.两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离地的距离与时间的关系,结合图象,下列结论错误的是( )
A.是表示甲离地的距离与时间关系的图象
B.乙的速度是
C.两人相遇时间在
D.当甲到达终点时乙距离终点还有
6.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为( )
A.B.C.D.
7.下列函数中,当x>0时,y随x的增大而增大的是( )
A.
B.
C.
D.
8.抛掷一枚质地均匀的硬币,连续掷三次,出现“一次正面,两次反面”的概率为( )
A.B.C.D.
9.下列说法中正确的有( )
①位似图形都相似;
②两个等腰三角形一定相似;
③两个相似多边形的面积比是,则周长比为;
④若一个矩形的四边形分别比另一个矩形的四边形长2,那么这两个矩形一定相似.
A.1个B.2个C.3个D.4个
10.如图,抛物线与轴交于点,顶点坐标为,与轴的交点在、之间(包含端点).有下列结论:
①当时,;②;③;④.
其中正确的有( )
A.1个B.2个C.3个D.4个
11.在中,,,,那么的值等于( )
A.B.C.D.
12.△ABC的外接圆圆心是该三角形( )的交点.
A.三条边垂直平分线B.三条中线
C.三条角平分线D.三条高
二、填空题(每题4分,共24分)
13.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为_____.
14.已知为锐角,且,那么等于_____________.
15.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转45°后得到正方形,继续旋转至2020次得到正方形,那点的坐标是__________.
16.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C,D分别落在边BC下方的点C′,D′处,且点C′,D′,B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为___(用含t的代数式表示).
17.请你写出一个二次函数,其图象满足条件:①开口向下;②与轴的交点坐标为.此二次函数的解析式可以是______________
18.如图,在平面直角坐标系中,第二象限内的点P是反比例函数y=(k≠0)图象上的一点,过点P作PA⊥x轴于点A,点B为AO的中点若△PAB的面积为3,则k的值为_____.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,点P(﹣1,m)是双曲线y=上的一个点,过点P作PQ⊥x轴于点Q,连接PO,△OPQ的面积为1.
(1)求m的值和双曲线对应的函数表达式;
(2)若经过点P的一次函数y=kx+b(k≠0、b≠0)的图象与x轴交于点A,与y交于点B且PB=2AB,求k的值.
20.(8分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
21.(8分)已知反比例函数和一次函数.
(1)当两个函数图象的交点的横坐标是-2和3时,求一次函数的表达式;
(2)当时,两个函数的图象只有一个交点,求的值.
22.(10分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3),
(1)①画出△ABC关于原点O的中心对称图形△A1B1C1;
②画出△ABC绕原点O逆时针旋转90°得到的△A2B2C2,写出点C2的坐标;
(2)若△ABC上任意一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则点Q的坐标为________.(用含m,n的式子表示)
23.(10分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.
(1)写出点B的坐标;
(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.
24.(10分)深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.
(1)小智被分配到A“全程马拉松”项目组的概率为 .
(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.
25.(12分)为深化课改,落实立德树人目标,某学校设置了以下四门拓展性课程:A.数学思维,B.文学鉴赏,C.红船课程,D.3D打印,规定每位学生选报一门.为了解学生的报名情况,随机抽取了部分学生进行调查,并制作成如下两幅不完整的统计图,请回答下列问题:
(1)求这次被调查的学生人数;
(2)请将条形统计图补充完整;
(3)假如全校有学生1000人,请估计选报“红船课程”的学生人数.
26.(12分)已知:如图,在半径为的中,、是两条直径,为的中点,的延长线交于点,且,连接。.
(1)求证:;
(2)求的长.
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、C
4、A
5、C
6、B
7、B
8、B
9、A
10、C
11、A
12、A
二、填空题(每题4分,共24分)
13、110°
14、
15、(-1,-1)
16、2t
17、
18、-1.
三、解答题(共78分)
19、(1)m=6,y=﹣; (2)k=﹣4或﹣2.
20、(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4).
21、(1);(2)
22、(1)①见解析,②见解析,点C2的坐标为(-3,1);(2)(-n,m)
23、(1)点B的坐标为(1,3);(2)点D的坐标为(,0);(3)存在,当t=s或s时,△APQ与△ADB相似.
24、(1)(2)
25、(1)80人 (2)见解析 (3)375
26、(1)证明见解析; (1)EM=4.
相关试卷
这是一份江苏省扬州市竹西中学2023-2024学年九上数学期末学业质量监测试题含答案,共6页。试卷主要包含了已知抛物线y=ax2+bx+c,在四张完全相同的卡片上等内容,欢迎下载使用。
这是一份江苏省无锡市江南中学2023-2024学年数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份江苏省南京市鼓楼实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的根为等内容,欢迎下载使用。