2023-2024学年江苏省无锡市硕放中学数学九上期末统考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1. 如图,AB是⊙O直径,若∠AOC=100°,则∠D的度数是( )
A.50°B.40°C.30°D.45°
2.若2sinA=,则锐角A的度数为( )
A.30°B.45°C.60°D.75°
3.如图①,在矩形中,,对角线相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则边的长为( ).
A.3B.4C.5D.6
4.如图,点,,都在上,若,则为( )
A.B.C.D.
5.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为
A.B.
C.D.
6.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作 OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为 ( )
A.B.C.1D.2
7.如图下列条件中不能判定的是( )
A.B.
C.D.
8.已知正方形的边长为4cm,则其对角线长是()
A.8cmB.16cmC.32cmD.cm
9.抛物线先向下平移1个单位,再向左平移2个单位,所得的抛物线是( )
A..B.
C.D.
10.剪纸是中国特有的民间艺术.以下四个剪纸图案中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
11.对于两个不相等的实数,我们规定符号表示中的较大值,如:,按照这个规定,方程的解为( )
A.2B.
C.或D.2或
12.如果,、分别对应、,且,那么下列等式一定成立的是( )
A.B.的面积:的面积
C.的度数:的度数D.的周长:的周长
二、填空题(每题4分,共24分)
13.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”
题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)
如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,根据题意列方程为 .
14.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.
15.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.
16.若,则化简得_______.
17.如图,在△ABC中,∠ACB=90°,AC=6,AB=1.现分别以点A、点B为圆心,以大于AB相同的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若将△BDE沿直线MN翻折得△B′DE,使△B′DE与△ABC落在同一平面内,连接B′E、B′C,则△B′CE的周长为_____.
18.像=x这样的方程,可以通过方程两边平方把它转化为2x+2=x2,解得x1=2,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x1=2时,=2满足题意;当x2=﹣1时,=﹣1不符合题意;所以原方程的解是x=2.运用以上经验,则方程x+=1的解为_____.
三、解答题(共78分)
19.(8分)如图1,矩形OABC的顶点A的坐标为(4,0),O为坐标原点,点B在第一象限,连接AC, tan∠ACO=2,D是BC的中点,
(1)求点D的坐标;
(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交 轴的正半轴于点E,连接DE交AB于点F.
①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时点P的坐标;
②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动的路径的长.
20.(8分)某校垃圾分类“督察部”从4名学生会干部(2男2女)随机选取2名学生会干部进行督查,请用枚举、列表或画树状图的方法求出恰好选中两名男生的概率.
21.(8分)已知:如图,在四边形中,,,垂足为,过点作,交的延长线于点.
(1)求证:四边形是平行四边形
(2)若,,求的长
22.(10分)已知如图所示,点到、、三点的距离均等于(为常数),到点的距离等于的所有点组成图形. 射线与射线关于对称,过点 C作于.
(1)依题意补全图形(保留作图痕迹);
(2)判断直线与图形的公共点个数并加以证明.
23.(10分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.
(1)若AE=4,求EC的长;
(2)若M为BC的中点,S△ABC=36,求S△ADN的值.
24.(10分)如图,在的直角三角形中,,是直角边所在直线上的一个动点,连接,将绕点逆时针旋转到,连接,.
(1)如图①,当点恰好在线段上时,请判断线段和的数量关系,并结合图①证明你的结论;
(2)当点不在直线上时,如图②、图③,其他条件不变,(1)中结论是否成立?若成立,请结合图②、图③选择一个给予证明;若不成立,请直接写出新的结论.
25.(12分)如图,抛物线y=ax2+bx过A(4,0) B(1,3)两点,点C 、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H
(1)求抛物线的解析式.
(2)直接写出点C的坐标,并求出△ABC的面积.
(3)点P是抛物线BA段上一动点,当△ABP的面积为3时,求出点P的坐标.
26.(12分)已知为的外接圆,点是的内心,的延长线交于点,交于点.
(1)如图1,求证:.
(2)如图2,为的直径.若,求的长.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、D
5、D
6、C
7、C
8、D
9、A
10、B
11、D
12、D
二、填空题(每题4分,共24分)
13、(x+1);.
14、1, ,
15、20%.
16、
17、3
18、x=﹣1
三、解答题(共78分)
19、(1)D(2,2);(2)①P(0,0);②
20、.
21、 (1)详见解析;(2)9
22、(1)补全图形见解析;(2)直线与图形有一个公共点,证明见解析.
23、(1)2(2)8
24、(1),证明见解析;(2)图②、图③结论成立,证明见解析.
25、(1)y=-x2+4x;(2)点C的坐标为(3,3),3;(3)点P的坐标为(2,4)或(3,3)
26、(1)证明见解析;(2)
2023-2024学年江苏省无锡市西漳中学数学九上期末监测模拟试题含答案: 这是一份2023-2024学年江苏省无锡市西漳中学数学九上期末监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,若点A等内容,欢迎下载使用。
2023-2024学年江苏无锡市塔影中学数学九上期末统考模拟试题含答案: 这是一份2023-2024学年江苏无锡市塔影中学数学九上期末统考模拟试题含答案,共8页。
江苏省无锡市新安中学2023-2024学年九上数学期末统考试题含答案: 这是一份江苏省无锡市新安中学2023-2024学年九上数学期末统考试题含答案,共7页。试卷主要包含了下列运算正确的是,解方程22=3的最适当的方法是等内容,欢迎下载使用。