2023-2024学年广东惠城区九上数学期末质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,已知,那么下列结论正确的是( )
A.B.C.D.
2.在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是( )
A.30°B.45°C.60°D.90°
3.在中,,,若,则的长为( )
A.B.C.D.
4.如果关于的方程没有实数根,那么的最大整数值是( )
A.-3B.-2C.-1D.0
5.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是
A.相交B.相切C.相离D.无法判断
6.如图,直线a∥b∥c,直线m、n与这三条平行线分别交于点A、B、C和点D、E、F.若AB=3,BC=5,DF=12,则DE的值为( )
A.B.4C.D.
7.抛物线与轴交于、两点,则、两点的距离是( )
A.B.C.D.
8.已知x=-1是方程2x2+ax-5=0的一个根,则a的值为( )
A.-3B.-4C.3D.7
9.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为( )
A.20°B.25°C.30°D.35°
10.反比例函数与二次函数在同一直角坐标系的图像可能是( )
A.B.C.D.
11.如图,如果从半径为6cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )
A.2cmB.4cmC.6cmD.8cm
12.方程x(x-1)=2(x-1)2的解为( )
A.1B.2C.1和2D.1和-2
二、填空题(每题4分,共24分)
13.如图,在△ABC中,∠A=90°,AB=AC=2,以AB为直径的圆交BC于点D,求图中阴影部分的面积为_____.
14.小刚和小亮用图中的转盘做“配紫色”游戏:分别转动两个转盘各一次,若其中的一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚赢,否则小亮赢.若用P1表示小刚赢的概率,用P2 表示小亮赢概率,则两人赢的概率P1________P2(填写>,=或<)
15.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷次啤酒瓶盖,凸面向上的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到)
16.关于的方程没有实数根,则的取值范围为____________
17.我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B处有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,则正方形城池的边长为_____步.
18.把配方成的形式为__________.
三、解答题(共78分)
19.(8分)如图,抛物线y=-x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(-1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).
(1)直接写出b,c的值及点D的坐标;
(2)点 E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E 的坐标;
(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.
20.(8分)某学校为了了解名初中毕业生体育考试成绩的情况(满分分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在这一组的频率为.请回答下列问题:
(1)在这个调查中,样本容量是______________;平均成绩是_________________;
(2)请补全成绩在这一组的频数分布直方图;
(3)若经过两年的练习,该校的体育平均成绩提高到了分,求该校学生体育成绩的年平均增长率.
21.(8分)如图,在锐角三角形ABC中,AB=4,BC=,∠B=60°,求△ABC的面积
22.(10分)如图,点E是矩形ABCD对角线AC上的一个动点(点E可以与点A和点C重合),连接BE.已知AB=3cm,BC=4cm.设A、E两点间的距离为xcm,BE的长度为ycm.
某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是该同学的探究过程,请补充完整:
(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:
说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:当BE=2AE时,AE的长度约为 cm.(结果保留一位小数)
23.(10分)阅读下面内容,并按要求解决问题: 问题:“在平面内,已知分别有个点,个点,个点,5 个点,…,n 个点,其中任意三 个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线? ” 探究:为了解决这个问题,希望小组的同学们设计了如下表格进行探究:(为了方便研 究问题,图中每条线段表示过线段两端点的一条直线)
请解答下列问题:
(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为 ;
(2)若某同学按照本题中的方法,共画了条直线,求该平面内有多少个已知点.
24.(10分)如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C处出发,沿线段CB匀速运动至点 B 处停止,过点D作DE⊥BC,交x轴于点E,点 C′是点C关于直线DE的对称点,连接 EC′,若△ DEC′与△ BOC 的重叠部分面积为S,点D的运动时间为t(秒),S与 t 的函数图象如图 2 所示.
(1)VD ,C 坐标为 ;
(2)图2中,m= ,n= ,k= .
(3)求出S与t 之间的函数关系式(不必写自变量t的取值范围).
25.(12分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.
(1)求坡底C点到大楼距离AC的值;
(2)求斜坡CD的长度.
26.(12分)如图,和都是等腰直角三角形,,的顶点与的斜边的中点重合,将绕点旋转,旋转过程中,线段与线段相交于点,射线与线段相交于点,与射线相交于点.
(1)求证:;
(2)求证:平分;
(3)当,,求的长.
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、A
4、B
5、B
6、C
7、B
8、A
9、B
10、C
11、B
12、C
二、填空题(每题4分,共24分)
13、1
14、<
15、
16、
17、1.
18、
三、解答题(共78分)
19、(1)b=2,c=1,D(2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)
20、(1),分;(2)见解析;(3).
21、9
22、解:(1)2.5;(2)图象见解析;(3)1.2(1.1—1.3均可)
23、(1);(2)8.
24、(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2);;.(3)①当点C′在线段BC上时, S=t2;②当点C′在CB的延长线上, S=−t2+t−;③当点E在x轴负半轴, S=t2−4t+1.
25、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.
26、(1)详见解析;(2)详见解析;(3)5.
广东省深圳龙华区七校联考2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份广东省深圳龙华区七校联考2023-2024学年九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列事件中是必然发生的事件是等内容,欢迎下载使用。
广东省茂名市高州2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份广东省茂名市高州2023-2024学年九上数学期末质量检测模拟试题含答案,共9页。试卷主要包含了将两个圆形纸片等内容,欢迎下载使用。
广东省惠州市惠城区第一中学2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份广东省惠州市惠城区第一中学2023-2024学年数学九上期末学业质量监测模拟试题含答案,共9页。试卷主要包含了已知,则的度数是等内容,欢迎下载使用。