2023-2024学年山东省枣庄市名校九年级数学第一学期期末联考试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边落在对角线 BD上,点A落在点A' 处,折痕为DG,求AG的长为( )
A.1.5B.2C.2.5D.3
2.sin 30°的值为( )
A.B.C.1D.
3.若,则代数式的值( )
A.-1B.3C.-1或3D.1或-3
4.如图,⊙O的圆周角∠A =40°,则∠OBC的度数为( )
A.80°B.50°C.40°D.30°
5.如图所示的工件的主视图是( )
A.B.C.D.
6.如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(,A,C,B三点共线),把一面镜子水平放置在平台上的点G处,测得,然后沿直线后退到点E处,这时在镜子里恰好看到凉亭的顶端A,测得.若小明身高1.6m,则凉亭的高度AB约为( )
A.2.5mB.9mC.9.5mD.10m
7.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形( )
A.一定不相似B.不一定相似C.一定相似D.不能确定
8.对于题目“如图,在中,是边上一动点,于点,点在点的右侧,且,连接,从点出发,沿方向运动,当到达点时,停止运动,在整个运动过程中,求阴影部分面积的大小变化的情况"甲的结果是先增大后减小,乙的结果是先减小后增大,其中( )
A.甲的结果正确B.乙的结果正确
C.甲、乙的结果都不正确,应是一直增大D.甲、乙的结果都不正确,应是一直减小
9.如图,空地上(空地足够大)有一段长为10m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m1.若设AD=xm,则可列方程( )
A.(60﹣)x=900B.(60﹣x)x=900C.(50﹣x)x=900D.(40﹣x)x=900
10.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数为( )
A.140°B.135°C.130°D.125°
11.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为( )米.
A.30B.30﹣30C.30D.30
12.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的是( )
A.①②④B.①③④C.②③④D.①③
二、填空题(每题4分,共24分)
13.若一元二次方程有两个不相等的实数根,则k的取值范围是 .
14.甲、乙两人在米短跑训练中,某次的平均成绩相等,甲的方差是,乙的方差是,这次短跑训练成绩较稳定的是___(填“甲”或“乙”)
15.用一个圆心角为150º,半径为8的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为________.
16.当x_____时,|x﹣2|=2﹣x.
17.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是_____.
18.四边形ABCD与四边形位似,点O为位似中心.若,则________.
三、解答题(共78分)
19.(8分)如图,已知四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC .
(1)若∠DFC=40º,求∠CBF的度数.
(2)求证: CD⊥DF .
20.(8分)蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.
(1)求这个反比例函数的表达式;
(2)当R=10Ω时,求电流I(A).
21.(8分)计算:2cs45°﹣tan60°+sin30°﹣tan45°
22.(10分)如图,两个班的学生分别在C、D两处参加植树劳动,现要在道路AO、OB的交叉区域内(∠AOB的内部)设一个茶水供应点M,M到两条道路的距离相等,且MC=MD,这个茶水供应点的位置应建在何处?请说明理由.(保留作图痕迹,不写作法)
23.(10分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
24.(10分)如图,AB是⊙O的直径,点C在圆O上,BE⊥CD垂足为E,CB平分∠ABE,连接BC
(1)求证:CD为⊙O的切线;
(2)若cs∠CAB=,CE=,求AD的长.
25.(12分)如图,在四边形ABCD中,AD∥BC,AD=2,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F.
(1)求∠ABE的大小及的长度;
(2)在BE的延长线上取一点G,使得上的一个动点P到点G的最短距离为,求BG的长.
26.(12分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份).
(1)甲顾客消费80元,是否可获得转动转盘的机会?
(2)乙顾客消费150元,获得打折待遇的概率是多少?
(3)他获得九折,八折,七折,五折待遇的概率分别是多少?
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、B
4、B
5、B
6、A
7、C
8、B
9、B
10、C
11、B
12、B
二、填空题(每题4分,共24分)
13、:k<1.
14、乙
15、
16、≤2
17、30°
18、1∶3
三、解答题(共78分)
19、(1)50º;(2)见解析
20、(1);(2)3.6A.
21、-
22、作图见解析,理由见解析.
23、米.
24、(1)见解析;(2)AD=.
25、(1)15°,;(2)1.
26、(1)因为规定顾客消费100元以上才能获得一次转动转盘的机会,所以甲顾客消费80元,不能获得转动转盘的机会;(2)(3)P(九折); P(八折)= = P(七折)= P(五折) .
山东省枣庄市2023-2024学年九年级数学第一学期期末监测模拟试题含答案: 这是一份山东省枣庄市2023-2024学年九年级数学第一学期期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年山东省枣庄市山亭区九年级数学第一学期期末考试试题含答案: 这是一份2023-2024学年山东省枣庄市山亭区九年级数学第一学期期末考试试题含答案,共8页。试卷主要包含了我们知道,已知反比例函数的图象经过点等内容,欢迎下载使用。
2023-2024学年山东省滨州市名校数学九年级第一学期期末联考试题含答案: 这是一份2023-2024学年山东省滨州市名校数学九年级第一学期期末联考试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知二次函数,则下列说法等内容,欢迎下载使用。