2023-2024学年安徽省宣城市宣州区裘公学校数学九年级第一学期期末经典试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为( ).
A.2B.3C.D.
2.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )
A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元
3.已知关于x的一元二次方程有两个相等的实数根,则a的值是( )
A.4B.﹣4C.1D.﹣1
4.一元二次方程的常数项是( )
A.﹣4B.﹣3C.1D.2
5.如图,线段 OA=2,且OA与x轴的夹角为45°,将点 A 绕坐标原点 O 逆时针旋转105°后得到点,则的坐标为( )
A.B.C.D.
6.下列命题错误的是 ( )
A.经过三个点一定可以作圆
B.经过切点且垂直于切线的直线必经过圆心
C.同圆或等圆中,相等的圆心角所对的弧相等
D.三角形的外心到三角形各顶点的距离相等
7.如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数( )
A.1个B.2个C.3个D.4个
8.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是( )
A.不存在实数根B.有两个不相等的实数根
C.有一个根是x=-1D.有两个相等的实数根
9.如图,⊙O的弦AB=16,OM⊥AB于M,且OM=6,则⊙O的半径等于
A.8B.6C.10D.20
10.下列命题正确的是( )
A.圆是轴对称图形,任何一条直径都是它的对称轴
B.平分弦的直径垂直于弦,并且平分弦所对的弧
C.相等的圆心角所对的弧相等,所对的弦相等
D.同弧或等弧所对的圆周角相等
11.如图,这个几何体的左视图是( )
A.B.C.D.
12.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为( )
A.直线x=1B.直线x=﹣2C.直线x=﹣1D.直线x=﹣4
二、填空题(每题4分,共24分)
13.已知某个正六边形的周长为,则这个正六边形的边心距是__________.
14.已知反比例函数的图象与经过原点的直线相交于点两点,若点的坐标为,则点的坐标为__________.
15.如图,直线y=-x+b与双曲线分别相交于点A,B,C,D,已知点A的坐标为(-1,4),且AB:CD=5:2,则m=_________.
16.若是方程的根,则的值为__________.
17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论:
①abc>0;
②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;
③2a+b=0;
④4a2+2b+c<0,
其中正确结论的序号为_____.
18.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1 cm,则BF=__________cm.
三、解答题(共78分)
19.(8分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.
(1)当OB=2时,求点D的坐标;
(2)若点A和点D在同一个反比例函数的图象上,求OB的长;
(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.
20.(8分)用你喜欢的方法解方程
(1)x2﹣6x﹣6=0
(2)2x2﹣x﹣15=0
21.(8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
22.(10分)已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一个根,求a的值.
23.(10分)新华商场销售某种冰箱,每台进货价为元,市场调研表明:当销售价为元时,平均每天能售出台,而当销售价每降低元时,平均每天就能多售出台.双“十一”期间,商场为了减少库存进行降价促销,如果在降价促销的同时还要保证这种冰箱的销售利润平均每天达到元,这种冰箱每台应降价多少元?
24.(10分)解方程:4x2﹣8x+3=1.
25.(12分)某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与每天销售量y(件)之间的关系如下表.
(1)直接写出:y与x之间的函数关系 ;
(2)按照这样的销售规律,设每天销售利润为w(元)即(销售单价﹣成本价)x每天销售量;求出w(元)与销售单价x(元/件)之间的函数关系;
(3)销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
26.(12分)黎托社区在创建全国卫生城市的活动中,随机检查了本社区部分住户10月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(.小于5天;.5天;.6天;.7天).
(1)扇形统计图部分所对应的圆心角的度数是______.
(2)12月份雨花区将举行一场各社区之间“垃圾分类”知识抢答赛,黎托社区准备从甲、乙、丙、丁四户家庭以抽签的形式选取两户家庭参赛,求甲、丙两户家庭恰好被抽中的概率.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、D
4、A
5、C
6、A
7、C
8、A
9、C
10、D
11、B
12、C
二、填空题(每题4分,共24分)
13、
14、(﹣1,﹣2)
15、
16、1
17、②③.
18、2+
三、解答题(共78分)
19、(1)点D坐标为(5,);(2)OB=2;(2)k=12.
20、(1)x1=1+,x2=1﹣;(2)x1=﹣2.5,x2=1
21、(1)(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元
22、a=﹣2
23、这种冰箱每台应降价元.
24、
25、(1)y=﹣10x+1;(2)w=﹣10x2+500x﹣10;(3)销售单价定为 25 元时,每天销售利润最大,最大销售利润 2250 元.
26、(1)108度;(2) .
x(元/件)
15
18
20
22
…
y(件)
250
220
200
180
…
2023-2024学年安徽省宣城市宣州区雁翅学校数学九年级第一学期期末达标检测试题含答案: 这是一份2023-2024学年安徽省宣城市宣州区雁翅学校数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
安徽省宣城市宣州区水阳中学2023-2024学年九年级数学第一学期期末监测试题含答案: 这是一份安徽省宣城市宣州区水阳中学2023-2024学年九年级数学第一学期期末监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示的工件,其俯视图是,﹣3的绝对值是等内容,欢迎下载使用。
2023-2024学年安徽省宣城市宣州区雁翅学校九年级数学第一学期期末综合测试试题含答案: 这是一份2023-2024学年安徽省宣城市宣州区雁翅学校九年级数学第一学期期末综合测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知,则等于等内容,欢迎下载使用。