2023-2024学年呼伦贝尔市重点中学九上数学期末质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,直线y=2x与双曲线在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为( )
A.(1.0)B.(1.0)或(﹣1.0)
C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)
2.对于反比例函数,下列说法错误的是( )
A.它的图象分别位于第二、四象限
B.它的图象关于成轴对称
C.若点,在该函数图像上,则
D.的值随值的增大而减小
3.抛物线先向下平移1个单位,再向左平移2个单位,所得的抛物线是( )
A..B.
C.D.
4.如图,在菱形中,,,,则的值是( )
A.B.2C.D.
5.如图,AB为⊙O的直径,C、D是⊙O上的两点, ,弧AD=弧CD.则∠DAC等于( )
A.B.C.D.
6.如图,在平行四边形中::若,则( )
A.B.C.D.
7.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,轴于点C,交C2于点A,轴于点D,交C2于点B,则四边形PAOB的面积为( )
A.2B.3C.4D.5
8.如图,点,,均在⊙上,当时,的度数是( )
A.B.C.D.
9.如图,P(x,y)是反比例函数的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的逐渐增大,矩形OAPB的面积( )
A.保持不变B.逐渐增大C.逐渐减小D.无法确定
10.向上发射一枚炮弹,经秒后的高度为,且时间与高度的关系式为,若此时炮弹在第秒与第秒时的高度相等,则在下列哪一个时间的高度是最高的( )
A.第秒B.第秒C.第秒D.第秒
11.在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是( )
A.30°B.45°C.60°D.90°
12.一种商品原价元,经过两次降价后每盒26元,设两次降价的百分率都为,则满足等式( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,在一个正方形围栏中均为地散步着许多米粒,正方形内有一个圆(正方形的内切圆)一只小鸡在围栏内啄食,则小鸡正在圆内区域啄食的概率为________.
14.某数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1m的竹竿的影长为0.5m,同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,其中,落在墙壁上的影长为0.8m,落在地面上的影长为4.4m,则树的高为_______m.
15.如图,在小孔成像问题中,小孔 O到物体AB的距离是60 cm,小孔O到像CD的距离是30 cm,若物体AB的长为16 cm,则像 CD的长是 _____cm.
16.已知x=2是方程x2-a=0的解,则a=_______.
17.150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是______cm.
18.关于x的一元二次方程x2+nx﹣12=0的一个解为x=3,则n=_____.
三、解答题(共78分)
19.(8分)如图,矩形中,,,点为边延长线上的一点,过的中点作交边于,交边的延长线于,,交边于,交边于
(1)当时,求的值;
(2)猜想与的数量关系,并证明你的猜想
20.(8分)已知直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求抛物线解析式;
(2)点C(m,0)在线段OA上(点C不与A,O点重合),CD⊥OA交AB于点D,交抛物线于点E,若DE=AD,求m的值;
(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D,B,M,N为顶点的四边形为平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.
21.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?
22.(10分)图1,图2分别是一滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿与斜坡垂直,大腿与斜坡平行,且三点共线,若雪仗长为,,,求此刻运动员头部到斜坡的高度(精确到)(参考数据:)
23.(10分)如图,在梯形ABCD中,AD//BC,AC与BD相交于点O,点E在线段OB上,AE的延长线与BC相交于点F,OD2 = OB·OE.
(1)求证:四边形AFCD是平行四边形;
(2)如果BC=BD,AE·AF=AD·BF,求证:△ABE∽△ACD.
24.(10分)如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且.
(1)求抛物线的解析式;
(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;
(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.
25.(12分)某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元,在销售过程中发现,月销售量(件)与销售单价(万元)之间存在着如图所示的一次函数关系
(1)求关于的函数关系式.
(2)试写出该公司销售该种产品的月获利(万元)关于销售单价(万元)的函数关系式,当销售单价为何值时,月获利最大?并求这个最大值.(月获利=月销售额一月销售产品总进价一月总开支)
26.(12分)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径,高,求这个圆锥形漏斗的侧面积.
参考答案
一、选择题(每题4分,共48分)
1、D
2、D
3、A
4、B
5、C
6、A
7、B
8、A
9、A
10、B
11、C
12、C
二、填空题(每题4分,共24分)
13、
14、9.2
15、8
16、4
17、1;
18、1
三、解答题(共78分)
19、(1);(2),证明见解析
20、(1)y=﹣x2﹣2x+3;(2)m=﹣2;(3)存在,点N的坐标为(﹣1,﹣2)或(﹣1,0),理由见解析
21、(1)y=﹣2x+200 (40≤x≤60);(2)售价为60元时获得最大利润,最大利润是1600元.
22、1.3m
23、(1)证明见解析;(2)证明见解析
24、(3);(3)R(3,3);(3)3或.
25、(1);(2)当x=10万元时,最大月获利为7万元
26、
售价x(元/千克)
45
50
60
销售量y(千克)
110
100
80
青海省重点中学2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份青海省重点中学2023-2024学年九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了如图,在中,等内容,欢迎下载使用。
肇庆市重点中学2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份肇庆市重点中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,已知,则,已知等内容,欢迎下载使用。
内蒙古呼伦贝尔市名校2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份内蒙古呼伦贝尔市名校2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数,如图,,,以下结论成立的是,反比例函数,下列说法不正确的是等内容,欢迎下载使用。