陕西省西安航天中学2023-2024学年九上数学期末质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图, AB与CD相交于点E,点F在线段BC上,且AC // EF // DB,若BE=5, BF=3,AE=BC,则的值为( )
A.B.C.D.
2.按如下方法,将△ABC的三边缩小到原来的,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是( )
A.点O为位似中心且位似比为1:2
B.△ABC与△DEF是位似图形
C.△ABC与△DEF是相似图形
D.△ABC与△DEF的面积之比为4:1
3.如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段 AB ,则点 B 的对应点 B′的坐标是( )
A.(-4 , 1)B.( -1, 2)C.(4 ,- 1)D.(1 ,- 2)
4.对于反比例函数,下列说法错误的是( )
A.它的图象分别位于第二、四象限
B.它的图象关于成轴对称
C.若点,在该函数图像上,则
D.的值随值的增大而减小
5.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为( )
A.6mB.8mC.10mD.12m
6.在Rt△ABC中,∠C=900,AC=4,AB=5,则sinB的值是 ( )
A.B.C.D.
7.边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为( )
A.1:5B.4:5C.2:10D.2:5
8.下列立体图形中,主视图是三角形的是( ).
A.B.C.D.
9.二次函数y=ax2+bx+c的图象如图所示,在ab、ac、b2﹣4ac,2a+b,a+b+c,这五个代数式中,其值一定是正数的有( )
A.1个B.2个C.3个D.4个
10.下列函数关系式中,是的反比例函数的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.一个不透明的盒子中有4个白球,3个黑球,2个红球,各球的大小与质地都相同,现随机从盒子中摸出一个球,摸到白球的概率是_____.
12.如图,在中,点是边的中点,⊙经过、、三点,交于点,是⊙的直径,是上的一个点,且,则___________.
13.如图,中,,且,,则___________
14.若,则=_____.
15.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)
16.如图,中,,点位于第一象限,点为坐标原点,点在轴正半轴上,若双曲线与的边、分别交于点、,点为的中点,连接、.若,则为_______________.
17.如图是某幼儿园的滑梯的简易图,已知滑坡AB的坡度是1:3 ,滑梯的水平宽是6m,则高BC为_______m.
18.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD=_____.
三、解答题(共66分)
19.(10分)为倡导绿色出行,某市推行“共享单车”公益活动,在某小区分别投放甲、乙两种不同款型的共享单车,甲型、乙型单车投放成本分别为元和元,乙型车的成本单价比甲型车便宜元,但两种类型共享单车的投放量相同,求甲型共享单车的单价是多少元?
20.(6分)某中学准备举办一次演讲比赛,每班限定两人报名,初三(1)班的三位同学(两位女生,一位男生)都想报名参加,班主任李老师设计了一个摸球游戏,利用已学过的概率知识来决定谁去参加比赛,游戏规则如下:在一个不透明的箱子里放3个大小质地完全相同的乒乓球,在这3个乒乓球上分别写上、、(每个字母分别代表一位同学,其中、分别代表两位女生,代表男生),搅匀后,李老师从箱子里随机摸出一个乒乓球,不放回,再次搅匀后随机摸出第二个乒乓球,根据乒乓球上的字母决定谁去参加比赛。
(1)求李老师第一次摸出的乒乓球代表男生的概率;
(2)请用列表或画树状图的方法求恰好选定一名男生和一名女生参赛的概率.
21.(6分)用配方法解下列方程.
(1) ;
(2) .
22.(8分)已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.
(1)求抛物线的解析式和,两点的坐标;
(2)如图,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由.
23.(8分)已知a=,b=,求.
24.(8分)对于平面直角坐标系中的两个图形K1和K2,给出如下定义:点G为图形K1上任意一点,点H为K2图形上任意一点,如果G,H两点间的距离有最小值,则称这个最小值为图形K1和K2的“近距离”。如图1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),边长为的正方形PQMN,对角线NQ平行于x轴或落在x轴上.
(1)填空:
①原点O与线段BC的“近距离”为 ;
②如图1,正方形PQMN在△ABC内,中心O’坐标为(m,0),若正方形PQMN与△ABC的边界的“近距离”为1,则m的取值范围为 ;
(2)已知抛物线C:,且-1≤x≤9,若抛物线C与△ABC的“近距离”为1,求a的值;
(3)如图2,已知点D为线段AB上一点,且D(5,-2),将△ABC绕点A顺时针旋转α(0º<α≤180º),将旋转中的△ABC记为△AB’C’,连接DB’,点E为DB’的中点,当正方形PQMN中心O’坐标为(5,-6),直接写出在整个旋转过程中点E运动形成的图形与正方形PQMN的“近距离”.
25.(10分)一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).
(1)小红摸出标有数3的小球的概率是 .
(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.
(3)求点P(x,y)在函数y=﹣x+5图象上的概率.
26.(10分)汕头国际马拉松赛事设有“马拉松(公里)”,“半程马拉松(公里)”,“迷你马拉松(公里)”三个项目,小红和小青参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.
(1)小红被分配到“马拉松(公里)”项目组的概率为___________.
(2)用树状图或列表法求小红和小青被分到同一个项目组进行志愿服务的概率.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、D
4、D
5、C
6、D
7、D
8、B
9、B
10、C
二、填空题(每小题3分,共24分)
11、.
12、1
13、1
14、
15、大
16、
17、1
18、110°.
三、解答题(共66分)
19、甲型共享单车的单价是元.
20、(1)李老师第一次摸出的乒乓球代表男生的概率为;(2)恰好选定一名男生和t名女生参赛的概率为.
21、 (1); (2).
22、(1)抛物线的解析式为:;点的坐标为,点的坐标为;(2)存在点,使四边形的面积最大;点的坐标为,四边形面积的最大值为32.
23、1.
24、(1)①2;②;(2)或;(3)点E运动形成的图形与正方形PQMN的“近距离”为.
25、(1);(2)共12种情况;(3)
26、(1);(2)图见解析,
陕西省西安高新一中学2023-2024学年九上数学期末质量检测试题含答案: 这是一份陕西省西安高新一中学2023-2024学年九上数学期末质量检测试题含答案,共9页。试卷主要包含了已知一组数据等内容,欢迎下载使用。
陕西省西安市雁塔区电子科技中学2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份陕西省西安市雁塔区电子科技中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
陕西省西安市航天中学2023-2024学年九上数学期末经典模拟试题含答案: 这是一份陕西省西安市航天中学2023-2024学年九上数学期末经典模拟试题含答案,共7页。试卷主要包含了如图,△OAB∽△OCD,OA等内容,欢迎下载使用。