贵州遵义市桐梓县2023-2024学年数学九上期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列事件是必然事件的为( )
A.明天早上会下雨B.任意一个三角形,它的内角和等于180°
C.掷一枚硬币,正面朝上D.打开电视机,正在播放“义乌新闻”
2.三角尺在灯泡O的照射下在墙上形成的影子如图所示,OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是( )
A.5:2B.2:5C.4:25D.25:4
3.如图所示的中心对称图形中,对称中心是( )
A.B.C.D.
4.若,且,则的值是 ( )
A.4B.2C.20D.14
5.若正六边形的半径长为4,则它的边长等于( )
A.4B.2C.D.
6.如图,是⊙的直径,弦⊥于点,,则( )
A.B.C.D.
7.抛掷一枚质地均匀的硬币,连续掷三次,出现“一次正面,两次反面”的概率为( )
A.B.C.D.
8.关于x的一元二次方程x2+bx-6=0的一个根为2,则b的值为( )
A.-2B.2C.-1D.1
9.如图,矩形ABCD中,连接AC,延长BC至点E,使,连接DE,若,则∠E的度数是( )
A.65°B.60°C.50°D.40°
10.一元二次方程的一次项系数和常数项依次是( )
A.和B.和C.和D.和
二、填空题(每小题3分,共24分)
11.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.
12.某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是____.
13.已知实数在数轴上的位置如图所示,则化简__________.
14.用一个圆心角为150º,半径为8的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为________.
15.下表是某种植物的种子在相同条件下发芽率试验的结果.
根据上表中的数据,可估计该植物的种子发芽的概率为________.
16.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.
17.将二次函数y=2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.
18.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的底面圆的半径为 cm.
三、解答题(共66分)
19.(10分)某单位800名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书数量,采用随机抽样的方法抽取30名职工的捐书数量作为样本,对他们的捐书数量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,
由图中给出的信息解答下列问题:
(1)补全条形统计图;
(2)求这30名职工捐书本数的平均数,写出众数和中位数;
(3)估计该单位800名职工共捐书多少本?
20.(6分)在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图2所示的“”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知,,.
求(1)线段与的差值是___
(2)的长度.
21.(6分)已知:矩形中,,,点,分别在边,上,直线交矩形对角线于点,将沿直线翻折,点落在点处,且点在射线上.
(1)如图1所示,当时,求的长;
(2)如图2所示,当时,求的长;
(3)请写出线段的长的取值范围,及当的长最大时的长.
22.(8分)如图,反比例函数y=(x>0)与直线AB:交于点C ,点P是反比例函数图象上一点,过点P作x轴的垂线交直线AB于点Q,连接OP,OQ.
(1)求反比例函数的解析式;
(2)点P在反比例函数图象上运动,且点P在Q的上方,当△POQ面积最大时,求P点坐标.
23.(8分)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.
(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为 ;
(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;
(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.
24.(8分)如图,在平面直角坐标系中,抛物线的顶点坐标为,与轴交于点,与轴交于点,.
(1)求二次函数的表达式;
(2)过点作平行于轴,交抛物线于点,点为抛物线上的一点(点在上方),作平行于轴交于点,当点在何位置时,四边形的面积最大?并求出最大面积.
25.(10分)在平面直角坐标系xOy中,△ABC的位置如图所示.
(1)分别写出△ABC各个顶点的坐标;
(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;
(3)求线段BC的长.
26.(10分)如图,为测量一条河的宽度, 某学习小组在河南岸的点A测得河北岸的树C在点A的北偏东60°方向,然后向东走10米到达B点,测得树C在点B的北偏东30°方向,试根据学习小组的测量数据计算河宽.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、B
4、A
5、A
6、A
7、B
8、D
9、A
10、B
二、填空题(每小题3分,共24分)
11、x1>2或x1<1.
12、
13、
14、
15、0.1
16、等
17、y=2(x-2)2+3
18、1.
三、解答题(共66分)
19、(1)补全图形见解析;(2)平均数是6本,众数是6本,中位数是6本.(3)该单位800名职工共捐书有4800本.
20、9 6
21、(1);(2);(3)
22、(1)y= ;(2)P(2,2)
23、(1)2;(2)36;(3).
24、(1);(2)点的坐标为时,
25、(1)A(-4,3),C(-2,5),B(3,0);(2)点A′的坐标为:(-4,-3),B′的坐标为:(-3,0),点C′的坐标为:(2,-5);(3)5.
.
26、米
种子个数
100
400
900
1500
2500
4000
发芽种子个数
92
352
818
1336
2251
3601
发芽种子频率
0. 92
0. 88
0. 91
0. 89
0. 90
0. 90
贵州省遵义市桐梓县2023-2024学年数学九上期末质量跟踪监视模拟试题含答案: 这是一份贵州省遵义市桐梓县2023-2024学年数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列说法中正确的有,如图,是用棋子摆成的“上”字, 见解析,B2,C2等内容,欢迎下载使用。
2023-2024学年贵州省遵义市桐梓县私立达兴中学数学九上期末调研模拟试题含答案: 这是一份2023-2024学年贵州省遵义市桐梓县私立达兴中学数学九上期末调研模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点坐标是等内容,欢迎下载使用。
2023-2024学年贵州省遵义市桐梓县私立达兴中学数学八上期末达标检测模拟试题含答案: 这是一份2023-2024学年贵州省遵义市桐梓县私立达兴中学数学八上期末达标检测模拟试题含答案,共7页。试卷主要包含了已知,则与的关系是等内容,欢迎下载使用。