贵州铜仁伟才学校2023-2024学年数学九上期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下面是“育”“才”“水”“井"四个字的甲骨文,是中心对称图形但不是轴对称图形的是( )
A.B.C.D.
2.从1、2、3、4四个数中随机选取两个不同的数,分别记为,,则满足的概率为( )
A.B.C.D.
3.老师设计了接力游戏,用合作的方式完成“求抛物线的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:
接力中,自己负责的一步出现错误的是( )
A.只有丁B.乙和丁C.乙和丙D.甲和丁
4.抛物线可以由抛物线平移得到,下列平移正确的是( )
A.先向左平移3个单位长度,然后向上平移1个单位
B.先向左平移3个单位长度,然后向下平移1个单位
C.先向右平移3个单位长度,然后向上平移1个单位
D.先向右平移3个单位长度,然后向下平移1个单位
5.如图,已知矩形ABCD的对角线AC的长为8,连接矩形ABCD各边中点E、F、G、H得到四边形EFGH,则四边形EFGH的周长为( )
A.12B.16C.24D.32
6.若关于x的函数y=(3-a)x2-x是二次函数,则a的取值范围( )
A.a≠0B.a≠3C.a<3D.a>3
7.若反比例函数的图象过点(-2,1),则这个函数的图象一定过点( )
A.(2,-1)B.(2,1)C.(-2,-1)D.(1,2)
8.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是( )
A.B.C.D.
9.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( )
A.y=5(x﹣2)2+1B.y=5(x+2)2+1C.y=5(x﹣2)2﹣1D.y=5(x+2)2﹣1
10.在平面直角坐标系中,点P(–2,3)关于原点对称的点Q的坐标为( )
A.(2,–3)B.(2,3)C.(3,–2)D.(–2,–3)
二、填空题(每小题3分,共24分)
11.已知a+b=0目a≠0,则=_____.
12.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则的长为_____.
13.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.
14.在平面直角坐标系中,点为原点,抛物线与轴交于点,以为一边向左作正方形,点为抛物线的顶点,当是锐角三角形时,的取值范围是__________.
15.某圆锥的底面半径是2,母线长是6,则该圆锥的侧面积等于________.
16.为准备体育中考,甲、乙两名学生各进行了10次1分钟跳绳的测试,已知两名学生10次1分钟跳绳的平均成绩均为160个,甲的方差是80(个),乙的方差是100(个).则这10次1分钟跳绳测试成绩比较稳定的学生是________ (填“甲”或“乙”).
17.如图,△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,CD=6,则AB=_______.
18.若一个正六边形的周长为24,则该正六边形的面积为 ▲ .
三、解答题(共66分)
19.(10分)不透明的袋中有四个小球,分别标有数字1、2、3、4,它们除了数字外都相同。第一次从中摸出一个小球,记录数字后放回袋中,第二次摇匀后再随机摸出一个小球.
(1)求第一次摸出的小球所标数字是偶数的概率;
(2)求两次摸出的小球所标数字相同的概率.
20.(6分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.
(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;
(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?
21.(6分)如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.
(1)探索:CE与BF有何数量关系和位置关系?并说明理由;
(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.
22.(8分)如图,点D、E分别在的边AB、AC上,若,,.
求证:∽;
已知,AD::3,,求AC的长.
23.(8分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?
(2)在飞行过程中,小球从飞出到落地所用时间是多少?
(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?
24.(8分)在平面直角坐标系xOy中,已知抛物线G:y=ax2﹣2ax+4(a≠0).
(1)当a=1时,
①抛物线G的对称轴为x= ;
②若在抛物线G上有两点(2,y1),(m,y2),且y2>y1,则m的取值范围是 ;
(2)抛物线G的对称轴与x轴交于点M,点M与点A关于y轴对称,将点M向右平移3个单位得到点B,若抛物线G与线段AB恰有一个公共点,结合图象,求a的取值范围.
25.(10分)如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.
(1)当t= 时,两点停止运动;
(2)设△BPQ的面积面积为S(平方单位)
①求S与t之间的函数关系式;
②求t为何值时,△BPQ面积最大,最大面积是多少?
26.(10分)我市某校准备成立四个活动小组:.声乐,.体育,.舞蹈,.书画,为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如下两幅不完整的统计图.
请结合图中所给信息,解答下列问题:
(1)本次抽样调查共抽查了 名学生,扇形统计图中的值是 ;
(2)请补全条形统计图;
(3)喜爱“书画”的学生中有两名男生和两名女生表现特别优秀,现从这4人中随机选取两人参加比赛,请用列表或画树状图的方法求出所选的两人恰好是一名男生和一名女生的概率.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、D
4、B
5、B
6、B
7、A
8、A
9、A
10、A
二、填空题(每小题3分,共24分)
11、1
12、π
13、x1>2或x1<1.
14、或
15、
16、甲
17、1
18、
三、解答题(共66分)
19、(1)(数字是偶数);(2)(数字相同)
20、(1)结果见解析;(2)不公平,理由见解析.
21、(1)CE=BF,CE⊥BF,理由见解析;(2)
22、(1)证明见解析;(2)
23、(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.
24、(1)①1;②m>2或m<0;(2)﹣<a≤﹣或a=1.
25、(1)1;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+2,当6<t≤1时,S=t2﹣10t+2,②t=3时,△PBQ的面积最大,最大值为3
26、 (1) 50,32;(2)见解析;(3)
贵州省贵州铜仁伟才学校2023-2024学年九年级数学第一学期期末检测试题含答案: 这是一份贵州省贵州铜仁伟才学校2023-2024学年九年级数学第一学期期末检测试题含答案,共7页。
2023-2024学年贵州省铜仁伟才学校数学九年级第一学期期末调研试题含答案: 这是一份2023-2024学年贵州省铜仁伟才学校数学九年级第一学期期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,二次函数图象的顶点坐标是等内容,欢迎下载使用。
贵州省贵州铜仁伟才学校2023-2024学年九年级数学第一学期期末调研模拟试题含答案: 这是一份贵州省贵州铜仁伟才学校2023-2024学年九年级数学第一学期期末调研模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。