福建省漳州市2023-2024学年九年级数学第一学期期末考试模拟试题含答案
展开
这是一份福建省漳州市2023-2024学年九年级数学第一学期期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax2+bx+c,若点A,在中,,,若,则的长为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.在下列函数图象上任取不同两点P(x1,y1),Q(x2,y2),一定能使(x2﹣x1)(y2﹣y1)>0成立的是( )
A.y=﹣2x+1(x<0)B.y=﹣x2﹣2x+8(x<0)
C.y=(x>0)D.y=2x2+x﹣6(x>0)
2.一条排水管的截面如图所示,已知排水管的半径,水面宽,则截面圆心到水面的距离是( )
A.B.C.D.
3.与相似,且面积比,则与的相似比为( )
A.B.C.D.
4.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是( )
A.4个B.3个C.2个D.1个
5.已知矩形ABCD,下列结论错误的是( )
A.AB=DCB.AC=BDC.AC⊥BDD.∠A+∠C=180°
6.如图,在平面直角坐标系中,直线l的表达式是,它与两坐标轴分别交于C、D两点,且∠OCD=60º,设点A的坐标为(m,0),若以A为圆心,2为半径的⊙A与直线l相交于M、N两点,当MN=时,m的值为( )
A.B.C.或D.或
7. “一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是 ( )
A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根
8.若一次函数 y=ax+b(a≠0)的图像与 x 轴交点坐标为(2,0),则抛物线y=ax2+bx+c的对称轴为( )
A.直线 x=1B.直线 x=-1C.直线 x=2D.直线 x=-2
9.若点A(﹣2,y1),B(﹣1,y2),C(4,y3)都在二次函数的图象上,则下列结论正确的是( )
A.B.C.D.
10.在中,,,若,则的长为( ).
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最少是由________个正方体搭成的。
12.如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将△ABC绕点O逆时针旋转,每秒旋转60°,则第2018秒时,点A的坐标为 .
13.动点A(m+2,3m+4)在直线l上,点B(b,0)在x轴上,如果以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是_____.
14.如图,矩形ABOC的顶点B、C分别在x轴、y轴上,顶点A在第一象限,点B的坐标为(,0),将线段OC绕点O顺时针旋转60°至线段OD,若反比例函数 (k≠0)的图象进过A、D两点,则k值为_____.
15.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解_____.
16.方程2x2-6x-1=0的负数根为___________.
17.点A(﹣1,1)关于原点对称的点的坐标是_____.
18.对于实数a和b,定义一种新的运算“*”,,计算=______________________.若恰有三个不相等的实数根,记,则k的取值范围是 _______________________.
三、解答题(共66分)
19.(10分)小明、小林是景山中学九年级的同班同学,在六月份举行的招生考试中,他俩都被亭湖高级中学录取,并将被编入A、B、C三个班,他俩希望编班时分在不同班.
(1)请你用画树状图法或列举法,列出所有可能的结果;
(2)求两人不在同班的概率.
20.(6分)已知关于的方程,若方程的一个根是–4,求另一个根及的值.
21.(6分)如图,在矩形中,,点在直线上,与直线相交所得的锐角为60°.点在直线上,,直线,垂足为点且,以为直径,在的左侧作半圆,点是半圆上任一点.
发现:的最小值为_________,的最大值为__________,与直线的位置关系_________.
思考:矩形保持不动,半圆沿直线向左平移,当点落在边上时,求半圆与矩形重合部分的周长和面积.
22.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣1,1)、B(0,﹣2)、C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,
(1)在图中画出点P1、P2、P3;
(2)继续将点P3绕点A旋转180°得到点P4,点P4绕点B旋转180°得到点P5,…,按此作法进行下去,则点P2020的坐标为 .
23.(8分)如图,在平面直角坐标系中,为坐标原点,的边垂直于轴,垂足为点,反比例函数的图象经过的中点,且与相交于点.
(1)求反比例函数的解析式;
(2)求的值.
24.(8分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.
(1)求小芳抽到负数的概率;
(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.
25.(10分)《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.
(规律探索)
(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=
如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2 =____;
同种操作,如图3,S阴影3=1--()2-()3 =__________;
如图4,S阴影4=1--()2-()3-()4 =___________;
……若同种地操作n次,则S阴影n=1--()2-()3-…-()n =_________.
于是归纳得到:+()2+()3+…+()n =_________.
(理论推导)
(2)阅读材料:求1+2+22+23+24+…+22015+22016的值.
解:设S=1+2+22+23+24+…+22015+22016,①
将①×2得:2S=2+22+23+24+…+22016+22017,②
由②-①得:2S—S=22017—1,即=22017-1.
即1+2+22+23+24+…+22015+22016=22017-1
根据上述材料,试求出+()2+()3+…+()n 的表达式,写出推导过程.
(规律应用)
(3)比较+++…… __________1(填“”、“”或“=”)
26.(10分)如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.
(1)求证:四边形EFHI是平行四边形;
(2)①当AD与BC满足条件 时,四边形EFHI是矩形;
②当AG与BC满足条件 时,四边形EFHI是菱形.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、B
5、C
6、C
7、C
8、A
9、D
10、A
二、填空题(每小题3分,共24分)
11、
12、
13、
14、4
15、x1=0,x4=﹣1.
16、
17、(1,﹣1)
18、
三、解答题(共66分)
19、(1)9种结果,见解析;(2)P=
20、1,-2
21、, 10 , ;,.
22、(1)见解析;(2) (﹣2,﹣2)
23、(1);(2).
24、(1);(2)
25、(1);;;()n;1 - ()n ;(2)+()2+()3+…+()n = 1-()n,推导过程见解析;(3)=
26、(1)证明见解析;(2)①AD⊥BC;②2AD=3BC
相关试卷
这是一份2023-2024学年福建省漳州市龙海市第二中学九上数学期末考试模拟试题含答案,共7页。试卷主要包含了下列算式正确的是,根据下面表格中的对应值等内容,欢迎下载使用。
这是一份福建省漳州市龙海市2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。
这是一份福建省漳州市2023-2024学年九年级上学期数学期末考试模拟试卷,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。