福建省(南平厦门福州漳州市)2023-2024学年九年级数学第一学期期末检测试题含答案
展开
这是一份福建省(南平厦门福州漳州市)2023-2024学年九年级数学第一学期期末检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,函数的图象上有两点,,若,则,已知点P的坐标为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )
A.B.C.D.
2.关于的方程的根的情况,正确的是( ).
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
3.如图所示的几何体的左视图是( )
A.B.C.D.
4.两个相邻自然数的积是1.则这两个数中,较大的数是( )
A.11B.12C.13D.14
5.如图为4×4的正方形网格,A,B,C,D,O均在格点上,点O是( )
A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心
6.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是( )
A.②③B.①③④C.①②④D.①②③④
7.下列方程中有一个根为﹣1的方程是( )
A.x2+2x=0B.x2+2x﹣3=0C.x2﹣5x+4=0D.x2﹣3x﹣4=0
8.函数的图象上有两点,,若,则( )
A.B.C.D.、的大小不确定
9.如图所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为( )
A.35°B.30°C.25°D.20°
10.已知点P的坐标为(3,-5),则点P关于原点的对称点的坐标可表示为( )
A.(3, 5)B.(-3,5)C.(3, -5)D.(-3,-5)
11.二次函数的图象是一条抛物线,下列关于该抛物线的说法正确的是( )
A.抛物线开口向下B.抛物线与轴有两个交点
C.抛物线的对称轴是直线=1D.抛物线经过点(2,3)
12.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为( )
A.900个B.1080个C.1260个D.1800个
二、填空题(每题4分,共24分)
13.二次函数y=2x2﹣4x+4的图象如图所示,其对称轴与它的图象交于点P,点N是其图象上异于点P的一点,若PM⊥y轴,MN⊥x轴,则=_____.
14.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线;乙说:与轴的两个交点的距离为6;丙说:顶点与轴的交点围成的三角形面积等于9,则这条抛物线解析式的顶点式是______.
15.如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为___________.
16.在直径为4cm的⊙O中,长度为的弦BC所对的圆周角的度数为____________.
17.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,AOB与COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为_____.
18.将二次函数的图像向下平移个单位后,它的顶点恰好落在轴上,那么的值等于__________.
三、解答题(共78分)
19.(8分)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:
(1)三面涂有颜色的概率;
(2)两面涂有颜色的概率;
(3)各个面都没有颜色的概率.
20.(8分)如图,已知是的一条弦,请用尺规作图法找出的中点.(保留作图痕迹,不写作法)
21.(8分)先化简,再求值:,其中a=2.
22.(10分)国内猪肉价格不断上涨,已知今年10月的猪肉价格比今年年初上涨了80%,李奶奶10月在某超市购买1千克猪肉花了72元钱.
(1)今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克55元的猪肉按10月价格出售,平均一天能销售出100千克,随着国家对猪肉价格的调控,超市发现猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1800元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?
23.(10分)如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.
24.(10分)请回答下列问题.
(1)计算:
(2)解方程:
25.(12分)阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.
如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S1.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积为S.
(1)当OM经过点A时(如图①),则S、S1、S1之间的关系为: (用含S1、S1的代数式表示);
(1)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论任然成立吗:请说明理由.
26.(12分)如图,是⊙的直径,,是的中点,连接并延长到点,使.连接交⊙于点,连接.
(1)求证:直线是⊙的切线;
(2)若,求⊙的半径.
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、D
4、B
5、B
6、D
7、D
8、C
9、C
10、B
11、B
12、C
二、填空题(每题4分,共24分)
13、1.
14、,
15、
16、60°或 120°
17、1
18、1
三、解答题(共78分)
19、(1);(2);(3)
20、见解析
21、,2
22、(1)每千克40元(2)猪肉的售价应该下降5元
23、1
24、(1)-4;(2),.
25、(1);
(1)(1)中的结论仍然成立,理由见解析;
(1)(1)中的结论仍然成立,理由见解析.
26、(1)见解析;(2).
相关试卷
这是一份福建省漳州市龙海市2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。
这是一份2023-2024学年福建省厦门市数学九年级第一学期期末检测试题含答案,共7页。试卷主要包含了下列各式正确的是等内容,欢迎下载使用。
这是一份福建省(南平厦门福州漳州市)2023-2024学年八上数学期末达标检测试题含答案,共7页。试卷主要包含了25的平方根是,下列命题是假命题的是,在实数中,无理数的个数为等内容,欢迎下载使用。