湖北省孝感市名校2023-2024学年数学九上期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是
A.相离B.相切C.相交D.无法判断
2.由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是( )
A.B.C.D.
3.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是( )
A.B.C.D.
4.下列命题错误的是( )
A.对角线互相垂直平分的四边形是菱形
B.一组对边平行,一组对角相等的四边形是平行四边形
C.矩形的对角线相等
D.对角线相等的四边形是矩形
5.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为( )
A.110°B.120°C.150°D.160°
6.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是( )
A.B.
C.D.
7.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )
A.B.C.D.
8.如图,正六边形的边长是1cm,则线段AB和CD之间的距离为( )
A.2cmB. cmC. cmD.1cm
9.如图,矩形ABCD中,BC=4,CD=2,O为AD的中点,以AD为直径的弧DE与BC相切于点E,连接BD,则阴影部分的面积为( )
A.πB.C.π+2D.+4
10.下列几何体的三视图相同的是( )
A.圆柱 B.球 C.圆锥 D.长方体
二、填空题(每小题3分,共24分)
11.如图,在某一时刻,太阳光线与地面成的角,一只皮球在太阳光的照射下的投影长为,则皮球的直径是______.
12.因式分解:= .
13.抛物线的部分图象如图所示,对称轴是直线,则关于的一元二次方程的解为____.
14.如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC上,顶点D、G分别在边AB、AC上.设DE,矩形DEFG的面积为,那么关于的函数关系式是______. (不需写出x的取值范围).
15.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.
16.如图,在平行四边形ABCD中,添加一个条件________使平行四边形ABCD是矩形.
17.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣1,y1),则y1_____y1.(填>或<)
18.方程(x﹣3)(x+2)=0的根是_____.
三、解答题(共66分)
19.(10分)阅读下面材料:
学习函数知识后,对于一些特殊的不等式,我们可以借助函数图象来求出它的解集,例如求不等式x﹣3>的解集,我们可以在同一坐标系中,画出直线y1=x﹣3与函数y2=的图象(如图1),观察图象可知:它们交于点A(﹣1,﹣1),B(1,1).当﹣1<x<0,或x>1时,y1>y2,即不等式x﹣3>的解集为﹣1<x<0,或x>1.
小东根据学习以上知识的经验,对求不等式x3+3x2﹣x﹣3>0的解集进行了探究.下面是小东的探究过程,请补充完整:
(1)将不等式按条件进行转化:当x=0时,原不等式不成立;x>0时,原不等式转化为x2+3x﹣1>;当x<0时,原不等式转化为______;
(2)构造函数,画出图象:设y3=x2+3x﹣1,y1=,在同一坐标系(图2)中分别画出这两个函数的图象.
(3)借助图象,写出解集:观察所画两个函数的图象,确定两个函数图象交点的横坐标,结合(1)的讨论结果,可知:不等式x3+3x2﹣x﹣3>0的解集为______.
20.(6分)如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.
(1)a= ,c= ;
(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?
(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
21.(6分)解方程:5x(x+1)=2(x+1)
22.(8分)在Rt△ABC中,∠ACB=90°,AC=BC=3,点D是斜边AB上一动点(点D与点A、B不重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接AE,DE.
(1)求△ADE的周长的最小值;
(2)若CD=4,求AE的长度.
23.(8分)解方程:
(1)x2+3=4x
(2)3x(x-3)=-4
24.(8分) “脱贫攻坚战”打响以来,全国贫困人口减少了 8000多万人。某市为了扎实落实脱贫攻坚中“两 不愁,三保障”的住房保障工作,2017年投入5亿元资金,之后投入资金逐年增长,2019年投 入7.2亿元资金用于保障性住房建设.
(1)求该市这两年投入资金的年平均增长率.
(2)2020年该市计划保持相同的年平均増长率投入资金用于保障性住房建设,如果每户能得到 保障房补助款3万元,则2020年该市能够帮助多少户建设保障性住房?
25.(10分)已知是上一点,.
(Ⅰ)如图①,过点作的切线,与的延长线交于点,求的大小及的长;
(Ⅱ)如图②,为上一点,延长线与交于点,若,求的大小及的长.
26.(10分)如图,是的直径,轴,交于点.
(1)若点,求点的坐标;
(2)若为线段的中点,求证:直线是的切线.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、B
4、D
5、A
6、A
7、B
8、B
9、A
10、B
二、填空题(每小题3分,共24分)
11、15
12、.
13、
14、;
15、1.
16、AC=BD或∠ABC=90°
17、>
18、x=3或x=﹣1.
三、解答题(共66分)
19、(2)x2+3x﹣2<;(2)画图见解析;(3)﹣3<x<﹣2或x>2.
20、(1),;(2)当足球飞行的时间s时,足球离地面最高,最大高度是4.5m;(3)能.
21、x=﹣1或x=0.1
22、(1)6+;(2)3﹣或3+
23、(1)x=3,x=1;(2)x= ,x= .
24、(1)年平均增长率为20%;(2)28800户
25、(Ⅰ),PA=4;(Ⅱ),
26、(1);(2)见解析.
山西省朔州市名校2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份山西省朔州市名校2023-2024学年数学九上期末学业质量监测模拟试题含答案,共8页。
山西省晋中市名校2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份山西省晋中市名校2023-2024学年数学九上期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,若,则的值为,下列说法中,不正确的是等内容,欢迎下载使用。
2023-2024学年湖北省咸宁市名校数学九上期末监测模拟试题含答案: 这是一份2023-2024学年湖北省咸宁市名校数学九上期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。