浙江省杭州市高桥2023-2024学年九年级数学第一学期期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.方程x2+4x+4=0的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.有一个实数根D.没有实数根
2.已知a、b、c、d是比例线段.a=2、b=3、d=1.那么c等于( )
A.9B.4C.1D.12
3.如图是二次函数图象的一部分,其对称轴是,且过点,下列说法:①;②;③;④若是抛物线上两点,则,其中说法正确的是( )
A.①②B.②③C.①②④D.②③④
4.如图,四边形ABCD内接于,如果它的一个外角∠DCE=64°,那么∠BOD=( )
A.128°B.100°C.64°D.32°
5.从这七个数中随机抽取一个数记为,则的值是不等式组的解,但不是方程的实数解的概率为( ).
A.B.C.D.
6.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5,6,9,另一个三角形的最长边长为4.5,则它的最短边长是( )
A.B.C.D.
7.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
8.向上发射一枚炮弹,经秒后的高度为,且时间与高度的关系式为,若此时炮弹在第秒与第秒时的高度相等,则在下列哪一个时间的高度是最高的( )
A.第秒B.第秒C.第秒D.第秒
9.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是( )
A.AD=BDB.∠ACB=∠AOEC.弧AE=弧BED.OD=DE
10.如图,,若,则的长是( )
A.4B.6C.8D.10
二、填空题(每小题3分,共24分)
11.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S甲2=6.5分2,乙同学成绩的方差S乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).
12.菱形有一个内角为60°,较短的对角线长为6,则它的面积为_____.
13.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于,则密码的位数至少要设置___位.
14.掷一枚硬币三次,正面都朝上的概率是__________.
15.为准备体育中考,甲、乙两名学生各进行了10次1分钟跳绳的测试,已知两名学生10次1分钟跳绳的平均成绩均为160个,甲的方差是80(个),乙的方差是100(个).则这10次1分钟跳绳测试成绩比较稳定的学生是________ (填“甲”或“乙”).
16.如图,点的坐标为,过点作轴的垂线交过原点与轴夹角为的直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点……按此做法进行下去,则点的坐标是_____.
17.如图所示的网格是正方形网格,线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,则α的值为_____.
18.如图,在中,点是边的中点,⊙经过、、三点,交于点,是⊙的直径,是上的一个点,且,则___________.
三、解答题(共66分)
19.(10分)如图,坡AB的坡比为1:2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H、A、T在同一条地平线MN上.
(1)试问坡AB的高BT为多少米?
(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°和30°,试求建筑物的高度CH.(精确到米,≈1.73,≈1.41)
20.(6分)如图,抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0).
(1)求该抛物线所表示的二次函数的表达式;
(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x轴于点B,求△ABC的面积.
21.(6分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.
(1)求证:∠A=∠DOB;
(2)DE与⊙O有怎样的位置关系?请说明理由.
22.(8分)如图所示,在中,点在边上,联结,,交边于点,交延长线于点,且.
(1)求证:;
(2)求证:.
23.(8分)解方程
(1)(x+1)2﹣25=0
(2)x2﹣4x﹣2=0
24.(8分)如图所示,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求OE的长.
(2)求经过O,D,C三点的抛物线的解析式.
(3)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ.
(4)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,直接写出M点的坐标;若不存在,请说明理由.
25.(10分)如图,在矩形ABCD中,AB=10,动点E、F分别在边AB、AD上,且AF=AE.将△AEF绕点E顺时针旋转10°得到△A'EF',设AE=x,△A'EF'与矩形ABCD重叠部分面积为S,S的最大值为1.
(1)求AD的长;
(2)求S关于x的函数解析式,并写出自变量x的取值范围.
26.(10分)(1)解方程
(2)计算:
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、A
4、A
5、B
6、B
7、B
8、B
9、D
10、C
二、填空题(每小题3分,共24分)
11、乙
12、18
13、1.
14、
15、甲
16、
17、60°或120 °
18、1
三、解答题(共66分)
19、(1)坡AB的高BT为50米;(2)建筑物高度为89米
20、(1)y1=﹣(x﹣1)2+4;(2).
21、(1)见解析;(2)相切,理由见解析
22、(1)见解析;(2)见解析.
23、(1)x1=4,x2=﹣6;(2)x1=2+,x2=2﹣
24、(1)3;(2);(3)t=;(1)存在,M点的坐标为(2,16)或(-6,16)或
25、(1);(2)
26、(1),;(2)
浙江省杭州市富阳区2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案: 这是一份浙江省杭州市富阳区2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若反比例函数y=的图象经过点等内容,欢迎下载使用。
2023-2024学年浙江省杭州市高桥数学九上期末学业水平测试模拟试题含答案: 这是一份2023-2024学年浙江省杭州市高桥数学九上期末学业水平测试模拟试题含答案,共7页。试卷主要包含了以下事件为必然事件的是等内容,欢迎下载使用。
2023-2024学年浙江省杭州市杭州市萧山区高桥初级中学数学九年级第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年浙江省杭州市杭州市萧山区高桥初级中学数学九年级第一学期期末质量检测模拟试题含答案,共9页。