江苏省苏州市2023-2024学年九年级数学第一学期期末复习检测试题含答案
展开
这是一份江苏省苏州市2023-2024学年九年级数学第一学期期末复习检测试题含答案,共9页。试卷主要包含了若角都是锐角,以下结论,在平面直角坐标系中,将点A等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,一次函数y=﹣x+3的图象与反比例函数y=﹣的图象交于A,B两点,则不等式|﹣x+3|>﹣的解集为( )
A.﹣1<x<0或x>4B.x<﹣1或0<x<4
C.x<﹣1或x>0D.x<﹣1或x>4
2.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C 的位置,A1B1恰好经过点B,则旋转角α的度数等( )
A.70°B.65°C.55°D.35°
3.下图中几何体的左视图是( )
A.B.C.D.
4.若函数y=(m2-3m+2)x|m|-3是反比例函数,则m的值是( )
A.1B.-2C.±2D.2
5.若角都是锐角,以下结论:①若,则;②若,则;③若,则;④若,则.其中正确的是( )
A.①②B.①②③C.①③④D.①②③④
6.在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是( )
A.(−4,−2)B.(2,2)C.(−2,2)D.(2,−2)
7.如图,是矩形内的任意一点,连接、、、, 得到 , , , ,设它们的面积分别是,,,, 给出如下结论:①②③若,则④若,则点在矩形的对角线上.其中正确的结论的序号是( )
A.①②B.②③C.③④D.②④
8.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是( )
A.B.C.D.
9.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是
A.B.
C.D.
10.下列图形中,是中心对称的图形的是( )
A.直角三角形B.等边三角形C.平行四边形D.正五边形
二、填空题(每小题3分,共24分)
11.如图,为测量某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上. 若测得BE=10m,EC=5m,CD=8m,则河的宽度AB长为______________m.
12.若是方程的一个根,则式子的值为__________.
13.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=S△ABF,其中正确的结论有_____个.
14.数据2,3,5,5,4的众数是____.
15.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且csα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.1.其中正确的结论是_____.(把你认为正确结论的序号都填上)
16.我军侦察员在距敌方120m的地方发现敌方的一座建筑物,但不知其高度又不能靠近建筑物物测量,机灵的侦察员将自己的食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,则敌方建筑物的高度约是_______m.
17.半径为5的圆内接正六边形的边心距为__________.
18.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________
三、解答题(共66分)
19.(10分)如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?
20.(6分)如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,与在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数)
21.(6分)先化简,再求值:,其中﹣2≤a≤2,从中选一个你喜欢的整数代入求值.
22.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.
(1)求证:DE与⊙O相切;
(2)若CD=BF,AE=3,求DF的长.
23.(8分)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
(1)填空:该抛物线的“衍生直线”的解析式为 ,点A的坐标为 ,点B的坐标为 ;
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;
(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
24.(8分)如图,在社会实践活动中,某数学兴趣小组想测量在楼房CD顶上广告牌DE的高度,他们先在点A处测得广告牌顶端E的仰角为60°,底端D的仰角为30°,然后沿AC方向前行20m,到达B点,在B处测得D的仰角为45°(C,D,E三点在同一直线上).请你根据他们的测量数据计算这广告牌DE的高度(结果保留小数点后一位,参考数据:,).
25.(10分)已知三个顶点的坐标分别.
(1)画出;
(2)以B为位似中心,将放大到原来的2倍,在右图的网格图中画出放大后的图形△;
(3)写出点A的对应点的坐标:___.
26.(10分)定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.
(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A= 度;
(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分线,
①求证:△BDC是“近直角三角形”;
②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.
(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连结AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、D
4、B
5、C
6、D
7、D
8、B
9、C
10、C
二、填空题(每小题3分,共24分)
11、16
12、1
13、1
14、1
15、①、②、④.
16、1
17、
18、 (4+)
三、解答题(共66分)
19、变短了2.8米.
20、24米
21、,1
22、(1)见解析;(2)DF=2.
23、(1);(-2,);(1,0);
(2)N点的坐标为(0,),(0,);
(3)E(-1,-)、F(0,)或E(-1,),F(-4,)
24、广告牌的高度为54.6米.
25、(1)见解析;(2)见解析;(3)(−3,1)
26、(1)20;(2)①见解析;②存在,CE=;(3)tan∠C的值为或.
相关试卷
这是一份江苏省苏州市新草桥中学2023-2024学年数学九年级第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在中,,,,已知抛物线y=x2+等内容,欢迎下载使用。
这是一份江苏省苏州市平江中学2023-2024学年数学九上期末复习检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数的图象的顶点坐标是等内容,欢迎下载使用。
这是一份江苏省苏州市草桥实验中学2023-2024学年数学九年级第一学期期末复习检测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,如图,反比例函数的图象经过点A,下列事件中,不可能事件的是等内容,欢迎下载使用。