江苏省盐城市东台市第一教育集团2023-2024学年数学九上期末检测模拟试题含答案
展开
这是一份江苏省盐城市东台市第一教育集团2023-2024学年数学九上期末检测模拟试题含答案,共9页。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为( )
A.B.2C.5D.10
2.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则csB的值是( )
A.
B.
C.
D.
3.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为( )
A.10πB.
C.πD.π
4.二次函数的图象如图所示,下列结论:;;;;,其中正确结论的是
A.B.C.D.
5.小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是( )
A.B.C.D.
6.二次函数中与的部分对应值如下表所示,则下列结论错误的是( )
A.
B.当时,的值随值的增大而减小
C.当时,
D.方程有两个不相等的实数根
7.如图所示的几何体是由4个大小相同的小立方块搭成,它的俯视图是( )
A.B.C.D.
8.二次函数的图象与x轴的交点的横坐标分别为﹣1和3,则的图象与x轴的交点的横坐标分别为( )
A.1和5B.﹣3和1C.﹣3和5D.3和5
9.小明利用计算机列出表格对一元二次方程进行估根如表:那么方程的一个近似根是( )
A.B.C.D.
10.不论取何值时,抛物线与轴的交点有( )
A.0个B.1个C.2个D.3个
二、填空题(每小题3分,共24分)
11.如图,已知等边的边长为,顶点在轴正半轴上,将折叠,使点落在轴上的点处,折痕为.当是直角三角形时,点的坐标为__________.
12.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________
13.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为_____cm.
14.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为_____.
15.函数是关于的二次函数,且抛物线的开口向上,则的值为____________.
16.如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cs∠EFB的值为____.
17.是关于的一元二次方程的一个根,则___________
18.张老师在讲解复习《圆》的内容时,用投影仪屏幕展示出如下内容:
如图,内接于,直径的长为2,过点的切线交的延长线于点.
张老师让同学们添加条件后,编制一道题目,并按要求完成下列填空.
(1)在屏幕内容中添加条件,则的长为______.
(2)以下是小明、小聪的对话:
小明:我加的条件是,就可以求出的长
小聪:你这样太简单了,我加的是,连结,就可以证明与全等.
参考上面对话,在屏幕内容中添加条件,编制一道题目(此题目不解答,可以添线、添字母).______.
三、解答题(共66分)
19.(10分)如图,已知抛物线y1=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.
(1)△ABC是 三角形;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)结合图象,写出满足y1>y2时,x的取值范围 .
20.(6分)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.
(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:
(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.
21.(6分)如图,双曲线()与直线交于点和,连接和.
(1)求双曲线和直线的函数关系式.
(2)观察图像直接写出:当时,的取值范围.
(3)求的面积.
22.(8分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.
(1)求一次函数的表达式;
(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价的范围.
23.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.
(1)求证:DE与⊙O相切;
(2)若CD=BF,AE=3,求DF的长.
24.(8分)如图,在平行四边形ABCD中,E为BC边上一点,连接DE,点F为线段DE上一点,且∠AFE=∠B.
(1)求证△ADF∽△DEC;
(2)若BE=2,AD=6,且DF=DE,求DF的长度.
25.(10分)如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.
(1)求线段BC的长;
(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;
(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.
26.(10分)如图,在平面直角坐标系中,双曲线l:y=(x>0)过点A(a,b),B(2,1)(0<a<2);过点A作AC⊥x轴,垂足为C.
(1)求l的解析式;
(2)当△ABC的面积为2时,求点A的坐标;
(3)点P为l上一段曲线AB(包括A,B两点)的动点,直线l1:y=mx+1过点P;在(2)的条件下,若y=mx+1具有y随x增大而增大的特点,请直接写出m的取值范围.(不必说明理由)
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、C
4、C
5、D
6、B
7、C
8、A
9、C
10、C
二、填空题(每小题3分,共24分)
11、,
12、 (4+)
13、2或1
14、
15、
16、
17、-1
18、3 ,求的长
三、解答题(共66分)
19、(1)直角;(2)P(,);(3)0<x<1.
20、(1)y与x间的函数关系是.(2)填表见解析;(3)当每辆车的月租金为4050元时,公司获得最大月收益307050元
21、(1),;(2)或;(3)
22、解:(3)一次函数的表达式为
(4)当销售单价定为4元时,商场可获得最大利润,最大利润是893元
(3)销售单价的范围是.
23、(1)见解析;(2)DF=2.
24、(1)见解析;(2)DF=4
25、(2);(2)t=2或2;(3)().
26、(1);(2);(1)0<m≤1
x
3000
3200
3500
4000
y
100
96
90
80
租出的车辆数
未租出的车辆数
租出每辆车的月收益
所有未租出的车辆每月的维护费
相关试卷
这是一份2023-2024学年江苏省盐城市东台市第一教育集团九年级数学第一学期期末学业水平测试试题含答案,共9页。试卷主要包含了函数y=mx2+,下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份江苏省盐城市东台市2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列事件是必然事件的为等内容,欢迎下载使用。
这是一份江苏省东台市实验中学教育集团2023-2024学年数学九上期末调研试题含答案,共7页。试卷主要包含了如图,斜面AC的坡度,方程的根是,抛物线的对称轴是等内容,欢迎下载使用。

