广东省深圳市宝山区2023-2024学年九上数学期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为( )
A.1个B.2个C.3个D.4个
2.如图:已知AD∥BE∥CF,且AB=4,BC=5,EF=4,则DE=( )
A.5B.3C.3.2D.4
3.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )
A.1B.2C.3D.4
4.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,,则的值为( )
A.B.C.D.
5.如图,在正方形中,是等边三角形,的延长线分别交于点,连结与相交于点H.给出下列结论,
①△ABE≌△DCF;②△DPH是等腰三角形;③;④,
其中正确结论的个数是( )
A.B.C.D.
6.方程2x(x﹣3)=5(x﹣3)的根是( )
A.x=B.x=3C.x1=,x2=3D.x1=﹣,x2=﹣3
7.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该
企业一年中应停产的月份是( )
A.1月,2月B.1月,2月,3月C.3月,12月D.1月,2月,3月,12月
8.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的周长比为 ( )
A.1:3B.1:4C.1:8D.1:9
9.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>1B.k<1C.k>1且k≠0D.k<1且k≠0
10.下列方程中没有实数根的是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.如图,在中,弦,点在上移动,连结,过点作交于点,则的最大值为__________.
12.在平面直角坐标系中,若点与点关于原点对称,则__________.
13.抛物线y=﹣x2+bx+c的部分图象如图所示,已知关于x的一元二次方程﹣x2+bx+c=0的一个解为x1=1,则该方程的另一个解为x2=_____.
14.如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(4,0),则点E的坐标是_____.
15.已知抛物线y=x2+2kx﹣6与x轴有两个交点,且这两个交点分别在直线x=2的两侧,则k的取值范围是_____.
16.直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x+b<的解集是_______.
17.如图,已知在中,.以为直径作半圆,交于点.若,则的度数是________度.
18.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为的大视力表制作一个测试距离为的小视力表.如图,如果大视力表中“”的高度是,那么小视力表中相应“”的高度是__________.
三、解答题(共66分)
19.(10分)如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求证:CD= CE.
20.(6分)某兴趣小组想借助如图所示的直角墙角(两边足够长),用长的篱笆围成一个矩形花园(篱笆只围、两边).
(1)若围成的花园面积为,求花园的边长;
(2)在点处有一颗树与墙,的距离分别为和,要能将这棵树围在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时花园的边长.
21.(6分)在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.
22.(8分)画出如图几何体的主视图、左视图、俯视图.
23.(8分)工艺商场按标价销售某种工艺品时,每件可获利45元;并且进价50件工艺品与销售40件工艺品的价钱相同.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
24.(8分)如图1,的直径,点为线段上一动点,过点作的垂线交于点,,连结,.设的长为,的面积为.
小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小东的探究过程,请帮助小东完成下面的问题.
(1)通过对图1的研究、分析与计算,得到了与的几组对应值,如下表:
请求出表中小东漏填的数;
(2)如图2,建立平面直角坐标系,描出表中各对应值为坐标的点,画出该函数的大致图象;
(3)结合画出的函数图象,当的面积为时,求出的长.
25.(10分)已知:如图,抛物线y=﹣x2+2x+3交x轴于点A、B,其中点A在点B的左边,交y轴于点C,点P为抛物线上位于x轴上方的一点.
(1)求A、B、C三点的坐标;
(2)若△PAB的面积为4,求点P的坐标.
26.(10分)如图所示,∠DBC=90°,∠C=45°,AC=2,△ABC绕点B逆时针旋转60°得到△DBE,连接AE.
(1)求证:△ABC≌△ABE;
(2)连接AD,求AD的长.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、C
4、B
5、A
6、C
7、D
8、A
9、D
10、D
二、填空题(每小题3分,共24分)
11、2
12、1
13、﹣1
14、(6,6).
15、
16、0<x<1或x>1.
17、1
18、
三、解答题(共66分)
19、见解析
20、(1)花园的边长为:和;(2)当或时,有最大值为,此时花园的边长为或.
21、两次摸到的球都是红球的概率为.
22、如图所示,见解析.
23、(1)进价为180元,标价为1元,(2)当降价为10元时,获得最大利润为4900元.
24、(1);(2)详见解析;(3)2.0或者3.7
25、(1)A(﹣1,0),B(3,0),C(0,3);(2)P点坐标为(1﹣,2),(1+,2)
26、(1)见解析;(2).
0
0.5
1
1.5
2
2.5
3
3.5
4
0
0.7
1.7
2.9
4.8
5.2
4.6
0
广东省深圳市桃源中学2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份广东省深圳市桃源中学2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如图所示,给出下列条件,抛物线如图所示,给出以下结论等内容,欢迎下载使用。
2023-2024学年广东省深圳市耀华实验学校九上数学期末达标测试试题含答案: 这是一份2023-2024学年广东省深圳市耀华实验学校九上数学期末达标测试试题含答案,共7页。试卷主要包含了计算 的结果是,若,且,则的值是,若,下列结论正确的是等内容,欢迎下载使用。
广东省深圳市龙岗区龙岗街道新梓学校2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份广东省深圳市龙岗区龙岗街道新梓学校2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了对于二次函数,下列说法正确的是等内容,欢迎下载使用。