安徽省怀远县2023-2024学年九年级数学第一学期期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.一元二次方程的解是( )
A.B.C.,D.,
2.直径为1个单位长度的圆上有一点A与数轴上表示1的点重合,圆沿着数轴向左滚动一周,点A与数轴上的点B重合,则B表示的实数是( )
A.B.C.D.
3.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是( )
A.B.C.D.
4.二次函数y=ax2+bx+4(a≠0)中,若b2=4a,则( )
A.y最大=5B.y最小=5C.y最大=3D.y最小=3
5.已知抛物线与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为( )
A.B.C.D.
6.下列事件是必然事件的是( )
A.3个人分成两组,并且每组必有人,一定有2个人分在一组
B.抛一枚硬币,正面朝上
C.随意掷两个均匀的骰子,朝上面的点数之和为6
D.打开电视,正在播放动画片
7.若,则下列各式一定成立的是( )
A.B.C.D.
8.若点在反比例函数的图象上,则关于的二次方程的根的情况是( ).
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法确定
9.如图,二次函数的图象,则下列结论正确的是( )
①;②;③;④
A.①②③B.②③④C.①③④D.①②③④
10.如图,在△ABC中,点D是在边BC上,且BD=2CD,=,=,那么等于( )
A.=+B.=+C.=-D.=+
二、填空题(每小题3分,共24分)
11.如图,正方形的对角线上有一点,且,点在的延长线上,连接,过点作,交的延长 线于点,若,,则线段的长是________.
12.如图,C,D是抛物线y=(x+1)2﹣5上两点,抛物线的顶点为E,CD∥x轴,四边形ABCD为正方形,AB边经过点E,则正方形ABCD的边长为_____.
13.用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是_____cm.
14.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.
15.在-1、0、、1、、中任取一个数,取到无理数的概率是____________
16.方程x2+2x﹣1=0配方得到(x+m)2=2,则m=_____.
17.已知,则=____
18.在1:5000的地图上,某两地间的距离是,那么这两地的实际距离为______________千米.
三、解答题(共66分)
19.(10分)阅读材料:小胖同学遇到这样一个问题,如图1,在△ABC中,∠ABC=45°,AB=2,AD=AE,∠DAE=90°,CE=,求CD的长;
小胖经过思考后,在CD上取点F使得∠DEF=∠ADB(如图2),进而得到∠EFD=45°,试图构建“一线三等角”图形解决问题,于是他继续分析,又意外发现△CEF∽△CDE.
(1)请按照小胖的思路完成这个题目的解答过程.
(2)参考小胖的解题思路解决下面的问题:
如图3,在△ABC中,∠ACB=∠DAC=∠ABC,AD=AE,∠EAD+∠EBD=90°,求BE:ED.
20.(6分)如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
21.(6分)小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.
(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.
(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?( 精确到0.1)
22.(8分)如图,已知点在的直径延长线上,点为上,过作,与的延长线相交于,为的切线,,.
(1)求证:;
(2)求的长;
(3)若的平分线与交于点,为的内心,求的长.
23.(8分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=1.
(1)求该抛物线的函数解析式;
(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=1:2时,求点D的坐标.
(1)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.
24.(8分)如图,的顶点是双曲线与直线在第二象限的交点.轴于,且.
(1)求反比例函数的解析式;
(2)直线与双曲线交点为、,记的面积为,的面积为,求
25.(10分)平行四边形中,点为上一点,连接交对角线于点,点为上一点,于,且,点为的中点,连接;若.
(1)求的度数;
(2)求证:
26.(10分)已知:如图,在半圆中,直径的长为6,点是半圆上一点,过圆心作的垂线交线段的延长线于点,交弦于点.
(1)求证:;
(2)记,,求关于的函数表达式;
(3)若,求图中阴影部分的面积.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、C
4、D
5、A
6、A
7、B
8、A
9、B
10、D
二、填空题(每小题3分,共24分)
11、5
12、
13、10
14、1
15、
16、1
17、1
18、1
三、解答题(共66分)
19、CD=5;(1)见解析;(2)
20、(1);(2)S=,运动1秒使△PBQ的面积最大,最大面积是;(3)t=或t=.
21、(1)汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)他向前行驶了18.3米.
22、(1)见解析;(2);(3)
23、(1)y=﹣x2+2x+1;(2)点D(1,4)或(2,1);(1)当点P在x轴上方时,点P(,);当点P在x轴下方时,点(﹣,﹣)
24、(1);(2)
25、(1)30° (2)证明见解析
26、(1)见解析;(2);(3)
安徽省怀远县联考2023-2024学年九上数学期末预测试题含答案: 这是一份安徽省怀远县联考2023-2024学年九上数学期末预测试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,若点在抛物线上,则的值,如图,在中,,,,则等于等内容,欢迎下载使用。
2023-2024学年安徽省滁州地区数学九年级第一学期期末检测模拟试题含答案: 这是一份2023-2024学年安徽省滁州地区数学九年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中正确的是等内容,欢迎下载使用。
2023-2024学年怀远县联考九上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年怀远县联考九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了在如图所示的象棋盘,点P在双曲线上,则k的值为等内容,欢迎下载使用。