四川省资阳市名校2023-2024学年数学九年级第一学期期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( )
A.B.C.D.
2.若点关于原点对称点的坐标是,则的值为( )
A.B.C.D.
3.已知x1,x2是一元二次方程x2-2x-1=0的两根,则x1+x2-x1·x2的值是( )
A.1B.3C.-1D.-3
4.已知函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论,其中正确的结论有( )
①abc<0
②3a+c>0
③4a+2b+c<0
④2a+b=0
⑤b2>4ac
A.2B.3C.4D.5
5.如图1,E为矩形ABCD边AD上一点,点P从点C沿折线CD﹣DE﹣EB运动到点B时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )
A.AE=8cm
B.sin∠EBC=
C.当10≤t≤12时,
D.当t=12s时,△PBQ是等腰三角形
6.如图,E为矩形ABCD的CD边延长线上一点,BE交AD于G , AF⊥BE于F , 图中相似三角形的对数是( )
A.5B.7C.8D.10
7.如果两个相似三角形对应边之比是,那么它们的对应中线之比是( )
A.1:3B.1:4C.1:6D.1:9
8.已知的直径是8,直线与有两个交点,则圆心到直线的距离满足( )
A.B.C.D.
9.如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是( )
A.B.C.D.
10.如图,点在上,,则的半径为( )
A.3B.6C.D.12
二、填空题(每小题3分,共24分)
11.如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥轴,将正六边形ABCDEF绕原点O顺时针旋转,每次旋转60°,则第2019次后,顶点A的坐标为_______.
12.如图,是⊙的直径,,点是的中点,过点的直线与⊙交于、两点.若,则弦的长为__________.
13.二次函数y=2(x﹣3)2+4的图象的对称轴为x=______.
14.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .
15.如图,菱形的边长为1,,以对角线为一边,在如图所示的一侧作相同形状的菱形,再依次作菱形,菱形,……,则菱形的边长为_______.
16.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.
17.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于__________.
18.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程 有解的概率是__________。
三、解答题(共66分)
19.(10分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.
(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;
(2)求小丽投放的两袋垃圾不同类的概率.
20.(6分)如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.
(1)求点P的坐标及直线AC的解析式;
(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接FA、FC.求AF+CF的最小值;
(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形O′MNG,当点M与点A重合时停止平移.设平移的距离为t,正方形O′MNG的边MN与AC交于点R,连接O′P、O′R、PR,是否存在t的值,使△O′PR为直角三角形?若存在,求出t的值;若不存在,请说明理由.
21.(6分)如图,直线与轴交于点,与轴交于点,把沿轴对折,点落到点处,过点、的抛物线与直线交于点、.
(1)求直线和抛物线的解析式;
(2)在直线上方的抛物线上求一点,使面积最大,求出点坐标;
(3)在第一象限内的抛物线上,是否存在一点,作垂直于轴,垂足为点,使得以、、为项点的三角形与相似?若存在,求出点的坐标:若不存在,请说明理由.
22.(8分)如图,在边长为个单位长度的小正方形组成的网格中,给出了△ABC格点(顶点是网格线的交点).请在网格中画出△ABC以A为位似中心放大到原来的倍的格点△AB1C1,并写出△ABC与△AB1C1,的面积比(△ABC与△AB1C1,在点A的同一侧)
23.(8分)运城菖蒲酒产于山西垣曲.莒蒲洒远在汉代就已名噪酒坛,为历代帝王将相所喜爱,并被列为历代御膳香醪.菖蒲酒在市场的销售量会根据价格的变化而变化.菖蒲酒每瓶的成本价是元,某超市将售价定为元时,每天可以销售瓶,若售价每降低元,每天即可多销售瓶(售价不能高于元),若设每瓶降价元
用含的代数式表示菖蒲酒每天的销售量.
每瓶菖蒲酒的售价定为多少元时每天获取的利润最大?最大利润是多少?
24.(8分)在校园文化艺术节中,九年级(1)班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,恰好选到男生是 事件(填随机或必然),选到男生的概率是 .
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图的方法,求刚好是一男生和一女生的概率.
25.(10分)如图所示,有一电路AB是由如图所示的开关控制,闭合a,b,c,d四个开关中的任意两个开关.
(1)请用列表或画树状图的方法,列出所有可能的情况;
(2)求出使电路形成通路(即灯泡亮)的概率.
26.(10分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:
(1)求本次比赛获奖的总人数,并补全条形统计图;
(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;
(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、A
3、B
4、B
5、D
6、D
7、A
8、B
9、D
10、B
二、填空题(每小题3分,共24分)
11、
12、
13、1
14、.
15、
16、
17、或
18、
三、解答题(共66分)
19、(1);(2).
20、(1)P(2,3),yAC=﹣x+3;(2);(3)存在,t的值为﹣3或,理由见解析
21、(1);(2);(3)存在,或.
22、见解析,
23、(1);(2)售价定为元时,有最大利润,最大利润为元.
24、(1)随机,;(2)树状图见解析,
25、(1)列表见解析;(2)使电路形成通路(即灯泡亮)的概率是
26、(1)40,补图详见解析;(2)108°;(3).
四川省资阳市雁江区迎丰祥2023-2024学年九年级数学第一学期期末达标检测试题含答案: 这是一份四川省资阳市雁江区迎丰祥2023-2024学年九年级数学第一学期期末达标检测试题含答案,共7页。试卷主要包含了若点,矩形不具备的性质是,函数y=-x2-3的图象顶点是等内容,欢迎下载使用。
四川省资阳市资阳市雁江区2023-2024学年九年级数学第一学期期末教学质量检测试题含答案: 这是一份四川省资阳市资阳市雁江区2023-2024学年九年级数学第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知点A,定义等内容,欢迎下载使用。
2023-2024学年四川省德阳市名校九年级数学第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年四川省德阳市名校九年级数学第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,如果,那么下列各式中不成立的是,二次函数的顶点坐标为,近视镜镜片的焦距y等内容,欢迎下载使用。