周口市重点中学2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )
A.6B.8
C.10D.12
2.如图所示,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴的一个交点坐标为(0,3),其部分图象如图所示,下列结论:①abc<0;②4a+c>0;③方程ax2+bx+c=3的两个根是x1=0,x2=2;④方程ax2+bx+c=0有一个实根大于2;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
3.下列多边形一定相似的是( )
A.两个平行四边形B.两个矩形
C.两个菱形D.两个正方形
4.己知⊙的半径是一元二次方程的一个根,圆心到直线的距离.则直线与⊙的位置关系是
A.相离B.相切C.相交D.无法判断
5.下列图形中,成中心对称图形的是( )
A.B.C.D.
6.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为( )
A.逐渐变小B.逐渐变大C.时大时小D.保持不变
7.在中, ,则( ).
A.B.C.D.
8.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为,缆车速度为每分钟米,从山脚下到达山顶缆车需要分钟,则山的高度为( )米.
A.B.
C.D.
9.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是( )
A.B.C.D.
10.下列光线所形成的投影不是中心投影的是( )
A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线
二、填空题(每小题3分,共24分)
11.直线y=2被抛物线y=x2﹣3x+2截得的线段长为_____.
12.已 知二次函数 y =ax2-bx+2(a ≠0) 图象的顶点在第二象限,且过点(1,0),则a的取值范围是 _________;若a+b 的值为非零整数,则 b 的值为 _________.
13.如图,在△ABC中,AC:BC:AB=3:4:5,⊙O沿着△ABC的内部边缘滚动一圈,若⊙O的半径为1,且圆心O运动的路径长为18,则△ABC的周长为_____.
14.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为 .
15.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____;
16.在中,,,,圆在内自由移动.若的半径为1,则圆心在内所能到达的区域的面积为______.
17.在一个不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,摇匀后从袋子中任意摸出一个球,摸出_______颜色的球的可能性最大.
18.若有一组数据为8、4、5、2、1,则这组数据的中位数为__________.
三、解答题(共66分)
19.(10分)(1)用配方法解方程:;
(2)用公式法解方程:.
20.(6分)综合与实践:
如图,已知 中,.
(1)实践与操作: 作 的外接圆,连结 ,并在图中标明相应字母;(尺规作图,保留作图痕迹, 不写作法)
(2)猜想与证明: 若,求扇形的面积.
21.(6分)已知抛物线y=x2﹣2x﹣3与x轴交于点A、B,与y轴交于点C,点D为OC中点,点P在抛物线上.
(1)直接写出A、B、C、D坐标;
(2)点P在第四象限,过点P作PE⊥x轴,垂足为E,PE交BC、BD于G、H,是否存在这样的点P,使PG=GH=HE?若存在,求出点P坐标;若不存在,请说明理由.
(3)若直线y=x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点,直接写出t的取值范围.
22.(8分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF
(1)如图1,当点D在线段BC上时.求证CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;
①请直接写出CF,BC,CD三条线段之间的关系;
②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求OC的长度.
23.(8分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接.
(1)求证:;
(2)若,,求的长.
24.(8分)如图,在一条河流的两岸分别有A、B、C、D四棵景观树,已知AB//CD,某数学活动小组测得∠DAB=45°,∠CBE=73°,AB=10m,CD=30m,请计算这条河的宽度(参考数值:,,)
25.(10分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cs37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)
26.(10分)如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.
(1)求证:四边形EFHI是平行四边形;
(2)①当AD与BC满足条件 时,四边形EFHI是矩形;
②当AG与BC满足条件 时,四边形EFHI是菱形.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、D
4、A
5、B
6、D
7、A
8、C
9、D
10、A
二、填空题(每小题3分,共24分)
11、1
12、
13、4
14、.
15、
16、24
17、白
18、4
三、解答题(共66分)
19、(1);;(2);
20、(1)答案见解析;(2)
21、(1)A(﹣1,0),B(3,0),C(0,﹣3),D(0,﹣);(2)存在,(,﹣);(3)﹣<t<﹣1
22、(1)证明见解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.
23、(1)见解析;(2)
24、m
25、通信塔CD的高度约为15.9cm.
26、(1)证明见解析;(2)①AD⊥BC;②2AD=3BC
蚌埠市重点中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份蚌埠市重点中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各点在抛物线上的是等内容,欢迎下载使用。
兴安市重点中学2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案: 这是一份兴安市重点中学2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了同桌读了等内容,欢迎下载使用。
钦州市重点中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份钦州市重点中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了如图,在中,,则AC的长为等内容,欢迎下载使用。