云南省玉溪市红塔区第一区2023-2024学年数学九上期末达标测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.若两个最简二次根式和是同类二次根式,则n的值是( )
A.﹣1B.4或﹣1C.1或﹣4D.4
2.已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P( )
A.在⊙O内B.在⊙O上
C.在⊙O外D.与⊙O的位置关系无法确定
3.已知正方形的边长为4cm,则其对角线长是()
A.8cmB.16cmC.32cmD.cm
4.已知圆与点在同一平面内,如果圆的半径为5,线段的长为4,则点( )
A.在圆上B.在圆内C.在圆外D.在圆上或在圆内
5.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=4,AB=6,BC=12,则DE等于( )
A.4B.6C.8D.10
6.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为( )
A.5%B.20%C.15%D.10%
7.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是( )个.
①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•AB
A.1B.2C.3D.4
8.如图所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为( )
A.35°B.30°C.25°D.20°
9.若点在抛物线上,则的值( )
A.2021B.2020C.2019D.2018
10.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )
A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30
C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30
二、填空题(每小题3分,共24分)
11.抛物线y=x2﹣2x+1与x轴交点的交点坐标为______.
12.若双曲线的图象在第二、四象限内,则的取值范围是________.
13.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是_____;
14.若方程(a-3)x|a|-1+2x-8=0是关于x的一元二次方程,则a的值是_____.
15.某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A点出发,沿直线跑到B点后马上掉头原路返回A点算一个来回,回到A点后又马上调头去往B点,以此类推,每人要完成2个来回。一直两人全程均保持匀速,掉头时间忽略不计。如图所示是小华从出发到他率先完成第一个来回为止,两人到B点的距离之和y(米)与小华跑步时间x(分钟)之间的函数图像,则当小华跑完2个来回时,小月离B点的距离为___米.
16.如图,在平面直角坐标系中,已知点E(﹣4,2),F(﹣1,﹣1).以原点O为位似中心,把△EFO扩大到原来的2倍,则点E的对应点E'的坐标为_____.
17.已知m,n是方程的两个根,则代数式的值是__________.
18.已知圆锥的底面圆的半径是,母线长是,则圆锥的侧面积是________.
三、解答题(共66分)
19.(10分)如图,在四边形中,,,.分别以点,为圆心,大于长为半径作弧,两弧交于点,作直线交于点,交于点.请回答:
(1)直线与线段的关系是_______________.
(2)若,,求的长.
20.(6分)如图,正方形ABCD的边长为2,点E是AD边上的动点,从点A开始沿AD向D运动.以BE为边,在BE的上方作正方形BEFG,EF交DC于点H,连接CG、BH.请探究:
(1)线段AE与CG是否相等?请说明理由.
(2)若设AE=x,DH=y,当x取何值时,y最大?最大值是多少?
(3)当点E运动到AD的何位置时,△BEH∽△BAE?
21.(6分)(1)计算:|1﹣﹣2cs45°+2sin30°
(2)解方程:x2﹣6x﹣16=0
22.(8分)如图在直角坐标系中△ABC的顶点A、B、C三点坐标为A(7,1),B(8,2),C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A'B'C'(要求与△ABC在P点同一侧);
(2)直接写出A'点的坐标;
(3)直接写出△A'B'C'的周长.
23.(8分)综合与探究:
如图,将抛物线向右平移个单位长度,再向下平移个单位长度后,得到的抛物线,平移后的抛物线与轴分别交于,两点,与轴交于点.抛物线的对称轴与抛物线交于点.
(1)请你直接写出抛物线的解析式;(写出顶点式即可)
(2)求出,,三点的坐标;
(3)在轴上存在一点,使的值最小,求点的坐标.
24.(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为(元),请你分别用含的代数式来表示销售量(件)和销售该品牌玩具获得利润(元),并把结果填写在表格中:
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?
25.(10分)定义:如果三角形的两个内角与满足,那么称这样的三角形为“类直角三角形”.
尝试运用
(1)如图1,在中,,,,是的平分线.
①证明是“类直角三角形”;
②试问在边上是否存在点(异于点),使得也是“类直角三角形”?若存在,请求出的长;若不存在,请说明理由.
类比拓展
(2)如图2,内接于,直径,弦,点是弧上一动点(包括端点,),延长至点,连结,且,当是“类直角三角形”时,求的长.
26.(10分)如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,求点E与点C之间的距离.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、D
4、B
5、C
6、D
7、C
8、C
9、B
10、B
二、填空题(每小题3分,共24分)
11、(1,0)
12、m<8
13、
14、-3
15、1
16、(﹣8,4),(8,﹣4)
17、1
18、
三、解答题(共66分)
19、(1)AE垂直平分BD;(2)
20、(1)AE=CG,见解析;(2)当x=1时,y有最大值,为;(3)当E点是AD的中点时,△BEH∽△BAE,见解析.
21、(1)1;(1)x1=8,x1=﹣1
22、(1)见解析;(2)A′(﹣3,3),B′(0,6),C′(0,3);(3).
23、(1);(2),,;(3).
24、(1)1000-10x,-10x2+1300x-30000;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元.
25、(1)①证明见解析,②存在,;(2)或.
26、.
销售单价(元)
销售量(件)
销售玩具获得利润(元)
云南省玉溪市红塔区2023-2024学年九年级上学期期末数学试题(含答案): 这是一份云南省玉溪市红塔区2023-2024学年九年级上学期期末数学试题(含答案),共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
云南省玉溪市红塔区云2023-2024学年数学九上期末达标检测模拟试题含答案: 这是一份云南省玉溪市红塔区云2023-2024学年数学九上期末达标检测模拟试题含答案,共9页。试卷主要包含了方程的根是,抛物线y=ax2+bx+c等内容,欢迎下载使用。
云南省玉溪市红塔区2023-2024学年数学九上期末调研模拟试题含答案: 这是一份云南省玉溪市红塔区2023-2024学年数学九上期末调研模拟试题含答案,共8页。试卷主要包含了下列命题正确的是,下列图形等内容,欢迎下载使用。