云南省临沧市临翔区2023-2024学年数学九年级第一学期期末检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为,则根据题意可列方程为( )
A.B.
C.D.
2.如图,两条直线被三条平行线所截,若,则( )
A.B.C.D.
3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴是直线x=-1,则ax2+bx+c=0的解是( )
A.x1=-3,x2=1B.x1=3,x2=1C.x=-3D.x=-2
4.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,点C是AB的中点,∠ECD绕点C按顺时针旋转,且∠ECD=45°,∠ECD的一边CE交y轴于点F,开始时另一边CD经过点O,点G坐标为(-2,0),当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径长为( )
A.B.C.D.
5.一元二次方程的根的情况是( )
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根D.没有实数根
6.三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是
A.24B.24或C.48或D.
7.圆内接正三角形、正方形、正六边形的边长之比为( )
A.1:2:3B.1::C.::1D.无法确定
8.由于受猪瘟的影响,今年9 月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克23 元,连续两次上涨后,售价上升到每千克40 元,则下列方程中正确的是( )
A.B.
C.D.
9.如图,等边△ABC的边长为6,P为BC上一点,BP=2,D为AC上一点,若∠APD=60°,则CD的长为( )
A.2B.C.D.1
10.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(每小题3分,共24分)
11.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cs∠AOB的值等于___________.
12.若,则的值为__________.
13.如图,AD:DB=AE:EC,若∠ADE=58°,则∠B=_____.
14.已知一组数据:4,2,5,0,1.这组数据的中位数是_____.
15.若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
16.若m是关于x的方程的一个根,则的值为_________.
17.如图所示,半圆O的直径AB=4,以点B为圆心,为半径作弧,交半圆O于点C,交直径AB于点D,则图中阴影部分的面积是_____________.
18.小明身高1.76米,小亮身高1.6米,同一时刻他们站在太阳光下,小明的影子长为1米,则小亮的影长是_____米.
三、解答题(共66分)
19.(10分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).
(1)求证:AC=BD;
(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.
20.(6分)某校在向贫困地区捐书活动中全体师生积极捐书.为了解所捐书籍的种类,某同学对部分书籍进行了抽样调查,并根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:
(1)本次抽样调查的书籍有多少本?请通过计算补全条形统计图;
(2)求出图中表示科普类书籍的扇形圆心角度数;
(3)本次活动师生共捐书本,请估计有多少本文学类书籍?
21.(6分)如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子.(纸板的厚度忽略不计).
(1)若该无盖盒子的底面积为900cm2,求剪掉的正方形的边长;
(2)求折成的无盖盒子的侧面积的最大值.
22.(8分)某商贸公司以每千克元的价格购进一种干果,计划以每千克元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示: .
(1)求与之间的函数关系式;
(2)函数图象中点表示的实际意义是 ;
(3)该商贸公司要想获利元,则这种干果每千克应降价多少元?
23.(8分)内接于⊙,是直径,,点在⊙上.
(1)如图,若弦交直径于点,连接,线段是点到的垂线.
①问的度数和点的位置有关吗?请说明理由.
②若的面积是的面积的倍,求的正弦值.
(2)若⊙的半径长为,求的长度.
24.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)写出不等式ax2+bx+c>0的解集;
(3)写出y随x的增大而减小的自变量x的取值范围.
25.(10分)如图,已知直线与轴、轴分别交于点与双曲线分别交于点,且点的坐标为.
(1)分别求出直线、双曲线的函数表达式;
(2)求出点的坐标;
(3)利用函数图像直接写出:当在什么范围内取值时.
26.(10分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.
(1)求抛物线的解析式;
(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?
(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、A
4、A
5、D
6、B
7、C
8、A
9、B
10、D
二、填空题(每小题3分,共24分)
11、.
12、
13、58°
14、1
15、
16、2
17、
18、
三、解答题(共66分)
19、(1)证明见解析;(2)8﹣.
20、(1)本次抽样调查的书籍有本;作图见解析(2)(3)估计有本文学类书籍
21、(1)5cm;(1)最大值是800cm1.
22、(1)y=10x+100;(2)当x为0,y=100,即这种干果没有降价,以每千克60元的价格销售时,销售量是100千克;(3)商贸公司要想获利2090元,则这种干果每千克应降价9元.
23、(1)没有关系,∠CDF=∠CAB=60°;(2);(3)或
24、(1)x1=1,x2=3;(2)1<x<3;(3)x>2.
25、(1),;(2)D;(3).
26、(1)y=x2﹣4x+;(2)S=﹣(x﹣3)2+(1<x<1),当x=3时,S有最大值;(3)(0,﹣)
2023-2024学年云南省临沧市临翔区第一中学九年级数学第一学期期末检测模拟试题含答案: 这是一份2023-2024学年云南省临沧市临翔区第一中学九年级数学第一学期期末检测模拟试题含答案,共8页。试卷主要包含了已知=3,则代数式的值是,方程的根是等内容,欢迎下载使用。
云南省临沧市名校2023-2024学年九年级数学第一学期期末检测试题含答案: 这是一份云南省临沧市名校2023-2024学年九年级数学第一学期期末检测试题含答案,共9页。试卷主要包含了一元二次方程的根的情况是,如图,,相交于点,等内容,欢迎下载使用。
云南省临沧市临翔区第一中学2023-2024学年数学八上期末质量跟踪监视试题含答案: 这是一份云南省临沧市临翔区第一中学2023-2024学年数学八上期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在中,平分,,,则的长为,尺规作图作的平分线方法如下,如图,已知,是边的中点,则等于等内容,欢迎下载使用。