2023-2024学年黑龙江省齐齐哈尔市第二十一中学数学九上期末达标测试试题含答案
展开
这是一份2023-2024学年黑龙江省齐齐哈尔市第二十一中学数学九上期末达标测试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,中,,是边上的高,若,则等于等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.用配方法解方程时,原方程应变形为( )
A.B.C.D.
2.若反比例函数图象上有两个点,设,则不经过第( )象限.
A.一B.二C.三D.四
3.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为( )
A.5.5×103B.55×103C.0.55×105D.5.5×104
4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )
A.9分B.8分C.7分D.6分
5.如图所示,△ABC内接于⊙O,∠C=45°.AB=4,则⊙O的半径为 ( )
A.B.4
C.D.5
6.设a、b是一元二次方程x2﹣2x﹣1=0的两个根,则a2+a+3b的值为( )
A.5B.6C.7D.8
7.如图,从左边的等边三角形到右边的等边三角形,经过下列一次变化不能得到的是( )
A.轴对称B.平移C.绕某点旋转D.先平移再轴对称
8.如图,点A,B,C,D在⊙O上,AB=AC,∠A=40°,CD∥AB,若⊙O的半径为2,则图中阴影部分的面积是( )
A.B.C.D.
9.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( )
A.B.C.D.
10.中,,是边上的高,若,则等于( )
A.B.或C.D.或
二、填空题(每小题3分,共24分)
11.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的
位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ .
12.已知x=1是一元二次方程x2﹣3x+a=0的一个根,则方程的另一个根为_____.
13.如图,若被击打的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_____.
14.如图所示的网格是正方形网格,线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,则α的值为_____.
15.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是_______.
16.分别写有数字0,|-2|,-4,,-5的五张卡片,除数字不同外其它均相同,从中任抽一张,那么抽到非负数的概率是_________.
17.若a,b是一元二次方程的两根,则________.
18.在一个不透明的盒子里装有5个分别写有数字0,1,2,3,4的小球,它们除数字不同外其余全部相同.现从盒子里随机摸出一个小球(不放回),设该小球上的数字为m,再从盒子中摸出一个小球,设该小球上的数字为n,点P的坐标为,则点P落在抛物线与x轴所围成的区域内(含边界)的概率是________.
三、解答题(共66分)
19.(10分)如图,在矩形ABCD中,AB=3,BC=4,点E是线段AC上的一个动点且=k(0<k<1),点F在线段BC上,且DEFH为矩形;过点E作MN⊥BC,分别交AD,BC于点M,N.
(1)求证:△MED∽△NFE;
(2)当EF=FC时,求k的值.
(3)当矩形EFHD的面积最小时,求k的值,并求出矩形EFHD面积的最小值.
20.(6分)用配方法解方程:
21.(6分)在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”.
(1)已知A(2,0),B(0,4),C(1,2),D(4,1),这个点中,能与点O组成“和谐三角形”的点是 ,“和谐距离”是 ;
(2)连接BD,点M,N是BD上任意两个动点(点M,N不重合),点E是平面内任意一点,△EMN是以MN为“和谐边”的“和谐三角形”,求点E的横坐标t的取值范围;
(3)已知⊙O的半径为2,点P是⊙O上的一动点,点Q是平面内任意一点,△OPQ是“和谐三角形”,且“和谐距离”是2,请描述出点Q所在位置.
22.(8分)如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求证:CD= CE.
23.(8分)计算:(﹣1)2+3tan30°﹣(﹣2)(+2)+2sin60°.
24.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
请根据所给信息,解答以下问题:
(1)表中a=______,b=______;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
25.(10分)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
26.(10分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:
方案一:打九折销售;
方案二:不打折,每吨优惠现金200元.
试问小华选择哪种方案更优惠,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、D
4、C
5、A
6、C
7、A
8、B
9、B
10、B
二、填空题(每小题3分,共24分)
11、5.5
12、
13、1.
14、60°或120 °
15、15个.
16、
17、
18、
三、解答题(共66分)
19、(1)见解析;(2);(3)矩形EFHD的面积最小值为,k=.
20、x1=+1,x2=+1
21、(1)A,B;;(2);(3)点Q在以点O为圆心,4为半径的圆上;或在以点O为圆心,为半径的圆上.
22、见解析
23、3
24、(1)0.3 ,45;(2)108°;(3).
25、(1)y=x,;(2)存在,Q1(2,1)和Q2(﹣2,﹣1);(3)2+1
26、 (1) 10%.(1) 小华选择方案一购买更优惠.
组别
分数段
频次
频率
A
60≤x<70
17
0.17
B
70≤x<80
30
a
C
80≤x<90
b
0.45
D
90≤x<100
8
0.08
相关试卷
这是一份2023-2024学年黑龙江省龙江县九上数学期末达标测试试题含答案,共8页。试卷主要包含了阅读理解等内容,欢迎下载使用。
这是一份2023-2024学年泰安市重点中学数学九上期末达标检测试题含答案,共7页。试卷主要包含了方程x,下列说法正确的是,下列是一元二次方程的是等内容,欢迎下载使用。
这是一份2023-2024学年山东省菏泽市牡丹区第二十一初级中学数学九上期末达标测试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组的整数解有等内容,欢迎下载使用。