2023-2024学年湖南省涟源市数学九上期末经典试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:
①点C的坐标为(0,m);
②当m=0时,△ABD是等腰直角三角形;
③若a=-1,则b=4;
④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.
其中结论正确的序号是( )
A.①②B.①②③C.①②④D.②③④
2.有一个矩形苗圃园,其中一边靠墙,另外三边用长为的篱笆围成.已知墙长为若平行于墙的一边长不小于则这个苗圃园面积的最大值和最小值分别为( )
A.B.
C.D.
3.二次函数的图象如图所示,下列说法中错误的是( )
A.函数的对称轴是直线x=1
B.当x<2时,y随x的增大而减小
C.函数的开口方向向上
D.函数图象与y轴的交点坐标是(0,-3)
4.一元二次方程x2+px﹣2=0的一个根为2,则p的值为( )
A.1B.2C.﹣1D.﹣2
5.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )
A.B.C.D.
6.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠B=( )
A.80°B.100°C.110°D.120°
7.下列各组图形中,一定相似的是( )
A.任意两个圆
B.任意两个等腰三角形
C.任意两个菱形
D.任意两个矩形
8.如图,将绕点按逆时针方向旋转后得到,若,则的度数为( )
A.B.C.D.
9.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:
(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求
(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求
对于甲、乙两人的作法,下列判断何者正确?( )
A.两人皆正确B.两人皆错误
C.甲正确,乙错误D.甲错误,乙正确
10.己知是一元二次方程的一个根,则的值为( )
A.1B.-1或2C.-1D.0
二、填空题(每小题3分,共24分)
11.______.
12.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有_____个.
13.___________.
14.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:图象与轴只有一个交点;乙:图象的对称轴是直线丙:图象有最高点,请你写出一个满足上述全部特点的二次函数的解析式__________.
15.从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k,则既能使函数y=的图象经过第一、第三象限,又能使关于x的一元二次方程x2﹣kx+1=0有实数根的概率为_____.
16.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度.
17.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论中:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.正确的结论序号是_____.﹙直角填写正确的结论的序号﹚.
18.如图,是的外接圆,是的中点,连结,其中与交于点. 写出图中所有与相似的三角形:________.
三、解答题(共66分)
19.(10分)前苏联教育家苏霍姆林斯曾说过:“让学生变聪明的方法,不是补课,不是増加作业量,而是阅读,阅读,再阅读”.课外阅读也可以促进我们养成终身学习的习惯.云南某学校组织学生利用课余时间多读书,读好书,一段时间后,学校对部分学生每周阅读时间进行调查,并绘制了不完整的频数分布表和频数分布直方图,如图所示:
根据图表提供的信息,回答下列问题:
(1)填空:______,________;
(2)请补全频数分布直方图;
(3)该校共有3600名学生,估计学生每周阅读时间x(时)在范围内的人数有多少人?
20.(6分)定义:若函数与轴的交点的横坐标为,,与轴交点的纵坐标为,若,中至少存在一个值,满足(或),则称该函数为友好函数.如图,函数与轴的一个交点的横坐标为-3,与轴交点的纵坐标为-3,满足,称为友好函数.
(1)判断是否为友好函数,并说明理由;
(2)请探究友好函数表达式中的与之间的关系;
(3)若是友好函数,且为锐角,求的取值范围.
21.(6分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?
(2)在飞行过程中,小球从飞出到落地所用时间是多少?
(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?
22.(8分)实验探究:
如图,和是有公共顶点的等腰直角三角形,,交于、点.
(问题发现)
(1)把绕点旋转到图,、的关系是_________(“相等”或“不相等”),请直接写出答案;
(类比探究)
(2)若,,把绕点旋转,当时,在图中作出旋转后的图形,并求出此时的长;
(拓展延伸)
(3)在(2)的条件下,请直接写出旋转过程中线段的最小值为_________.
23.(8分)(1)如图1,在中,点在边上,且,,求的度数;
(2)如图2,在菱形中,,请设计三种不同的分法(只要有一条分割线段不同就视为不同分法),将菱形分割成四个三角形,使得每个三角形都是等腰三角形(不要求写画法,要求画出分割线段,标出所得三角形内角的度数).
24.(8分)计算:—.
25.(10分)(定义)在平面直角坐标系中,对于函数图象的横宽、纵高给出如下定义:当自变量x在范围内时,函数值y满足.那么我们称b-a为这段函数图象的横宽,称d-c为这段函数图象的纵高.纵高与横宽的比值记为k即:.
(示例)如图1,当时;函数值y满足,那么该段函数图象的横宽为2-(-1)=1,纵高为4-1=1.则.
(应用)(1)当时,函数的图象横宽为 ,纵高为 ;
(2)已知反比例函数,当点M(1,4)和点N在该函数图象上,且MN段函数图象的纵高为2时,求k的值.
(1)已知二次函数的图象与x轴交于A点,B点.
①若m=1,是否存在这样的抛物线段,当()时,函数值满足若存在,请求出这段函数图象的k值;若不存在,请说明理由.
②如图2,若点P在直线y=x上运动,以点P为圆心,为半径作圆,当AB段函数图象的k=1时,抛物线顶点恰好落在上,请直接写出此时点P的坐标.
26.(10分)如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.
(1)求证:△DAE∽△DCF.
(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.
(3)当四边形EBFD为轴对称图形时,则cs∠AED的值为 .
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、B
4、C
5、B
6、C
7、A
8、A
9、A
10、C
二、填空题(每小题3分,共24分)
11、
12、1
13、
14、(答案不唯一)
15、.
16、1
17、①③④
18、;.
三、解答题(共66分)
19、(1)25%,30;(2)见解析;(3)1800人
20、(1)是,理由见解析;(2);(1)或,且
21、(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.
22、(1)相等;(2)或;(3)1.
23、(1);(2)详见解析.
24、-3
25、(1)2,4;(2),2;(1)①存在,k=1;② 或或
26、(1)见解析;(2)y=x+4;(3).
时间(时)
频数
百分比
10
10%
25
m
n
30%
a
20%
15
15%
湖南省常德市市直学校2023-2024学年九上数学期末经典模拟试题含答案: 这是一份湖南省常德市市直学校2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了如图,点,,都在上,,则等于等内容,欢迎下载使用。
2023-2024学年湖南省涟源市数学九上期末调研模拟试题含答案: 这是一份2023-2024学年湖南省涟源市数学九上期末调研模拟试题含答案,共8页。试卷主要包含了当压力F等内容,欢迎下载使用。
2023-2024学年湖南省醴陵市青云学校九上数学期末经典模拟试题含答案: 这是一份2023-2024学年湖南省醴陵市青云学校九上数学期末经典模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,若点 A,一元二次方程的解为等内容,欢迎下载使用。