2023-2024学年湖北省武汉市高新区数学九年级第一学期期末复习检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.已知反比例函数图象如图所示,下列说法正确的是( )
A.
B.随的增大而减小
C.若矩形面积为2,则
D.若图象上两个点的坐标分别是,,则
2.等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是( )
A.8B.9C.8或9D.12
3.如图,抛物线交x轴的负半轴于点A,点B是y轴的正半轴上一点,点A关于点B的对称点Aʹ恰好落在抛物线上.过点Aʹ作x轴的平行线交抛物线于另一点C,则点Aʹ的纵坐标为()
A.1.5B.2C.2.5D.3
4.与相似,且面积比,则与的相似比为( )
A.B.C.D.
5.如图,直线y1= x+1与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是( )
A.x>﹣6或0<x<2B.﹣6<x<0或x>2C.x<﹣6或0<x<2D.﹣6<x<2
6.在下列图形中,不是中心对称图形的是( )
A.B.C.D.
7.若将抛物线的函数图象先向右平移1个单位,再向下平移2个单位后,可得到一个新的抛物线的图象,则所得到的新的抛物线的解析式为( )
A.B.
C.D.
8.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( )
A.32个B.36个C.40个D.42个
9.函数y=ax2-a与y=(a≠0)在同一直角坐标系中的图象可能是( )
A.B.C.D.
10.抛物线的对称轴是( )
A.直线B.直线
C.直线D.直线
二、填空题(每小题3分,共24分)
11.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”
题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)
如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,根据题意列方程为 .
12.用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为_____.
13.如图,正方形的对角线上有一点,且,点在的延长线上,连接,过点作,交的延长 线于点,若,,则线段的长是________.
14.如图,已知在中,.以为直径作半圆,交于点.若,则的度数是________度.
15.如图,在⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B=_____°.
16.二次函数y=ax1+bx+c(a≠2)的部分图象如图,图象过点(﹣1,2),对称轴为直线x=1.下列结论:①4a+b=2;②9a+c>3b;③当x>﹣1时,y的值随x值的增大而增大;④当函数值y<2时,自变量x的取值范围是x<﹣1或x>5;⑤8a+7b+1c>2.其中正确的结论是_____.
17.在Rt△ABC中,AC:BC=1:2,则sinB=______.
18.若反比例函数的图像上有两点,, 则____.(填“>”或“=”或“<”)
三、解答题(共66分)
19.(10分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=4,⊙O的半径为,求BC的长.
20.(6分)如图,在矩形ABCD中,AB=6cm,BC=8cm.点P从点B出发沿边BC向点C以2cm/s的速度移动,点Q从C点出发沿CD边向点B以1cm/s的速度移动.如果P、Q同时出发,几秒钟后,可使△PCQ的面积为五边形ABPQD面积的?
21.(6分)如图,在等腰直角三角形MNC中,CN=MN=,将△MNC绕点C顺时针旋转60°,得到△ABC,连接AM,BM,BM交AC于点O.
(1)∠NCO的度数为________;
(2)求证:△CAM为等边三角形;
(3)连接AN,求线段AN的长.
22.(8分)如图,已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).
(1)求抛物线的解析式;
(2)若点P(4,m)在抛物线上,求△PAB的面积.
23.(8分)计算:2|1﹣sin60°|+.
24.(8分)已知关于x的不等式组恰有两个整数解,求实数a的取值范围.
25.(10分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.
若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,
成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).
若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为
常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).
(1)当x = 1000时,y = 元/件,w内 = 元;
(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
参考公式:抛物线的顶点坐标是.
26.(10分)如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的一个动点(不与B,C重合),EF⊥AB,EG⊥AC,垂足分别为F,G.
(1)求证:;
(2)FD与DG是否垂直?若垂直,请给出证明;若不垂直,请说明理由;
(3)当的值为多少时,△FDG为等腰直角三角形?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、B
5、C
6、C
7、C
8、A
9、A
10、C
二、填空题(每小题3分,共24分)
11、(x+1);.
12、12
13、5
14、1
15、35°
16、①④⑤.
17、或
18、<
三、解答题(共66分)
19、(1)证明见解析;(2)BC=1;
20、2秒
21、(1)15°;(2)证明见解析;(3)
22、(1)y=;(2)3
23、2+
24、-4≤a<-3.
25、(1)140 1;(2)w外 = x2+(130-a)x;(3)a = 2;(4)见解析
26、(1)见解析;(2)FD与DG垂直,理由见解析;(3)当时,△FDG为等腰直角三角形,理由见解析.
湖北省武汉东湖高新区2023-2024学年九上数学期末复习检测试题含答案: 这是一份湖北省武汉东湖高新区2023-2024学年九上数学期末复习检测试题含答案,共8页。试卷主要包含了如图,正方形的边长为,点在边上等内容,欢迎下载使用。
2023-2024学年湖北省武汉市武昌区武汉市古田路中学数学九年级第一学期期末复习检测模拟试题含答案: 这是一份2023-2024学年湖北省武汉市武昌区武汉市古田路中学数学九年级第一学期期末复习检测模拟试题含答案,共7页。
2023-2024学年湖北省武汉市常青第一学校数学九上期末复习检测试题含答案: 这是一份2023-2024学年湖北省武汉市常青第一学校数学九上期末复习检测试题含答案,共7页。试卷主要包含了下列方程有两个相等的实数根是,下列事件中,是随机事件的是等内容,欢迎下载使用。