2023-2024学年广东省广州市省实教育集团数学九上期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是( )
A.B.
C.D.
2.如图,电线杆的高度为,两根拉线与相互垂直,,则拉线的长度为(、、在同一条直线上)( )
A.B.C.D.
3.已知抛物线的解析式为,则下列说法中错误的是( )
A.确定抛物线的开口方向与大小
B.若将抛物线沿轴平移,则,的值不变
C.若将抛物线沿轴平移,则的值不变
D.若将抛物线沿直线:平移,则、、的值全变
4.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图:
(1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C;
(2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D;
(3)连接BD,BC.
根据以上作图过程及所作图形,下列结论中错误的是( )
A.∠ABD=90°B.CA=CB=CDC.sinA=D.csD=
5.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )
A.B.C.D.
6.如图的的网格图,A、B、C、D、O都在格点上,点O是( )
A.的外心B.的外心C.的内心D.的内心
7.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.永州市2016年底大约有贫困人口13万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得( )
A.B.C.D.
8.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是( )
A.B.C.D.
9.若二次函数的图象经过点P (-1,2),则该图象必经过点( )
A.(1,2)B.(-1,-2)C.(-2,1)D.(2,-1)
10.反比例函数y=﹣的图象在( )
A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限
二、填空题(每小题3分,共24分)
11.若正六边形的边长为2,则此正六边形的边心距为______.
12.如图,若内一点满足,则称点为的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知中,,,为的布罗卡尔点,若,则________.
13.已知两个相似三角形与的相似比为1.则与的面积之比为________.
14.6与x的2倍的和是负数,用不等式表示为 .
15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么AP的长度为_____cm.
16.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是______Pa.
17.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.
18.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为__cm.
三、解答题(共66分)
19.(10分)解方程:
(1);
(2).
20.(6分)如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.
(1)求证:AD是⊙O的切线;
(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.
21.(6分)消费者在某火锅店饭后买单时可以参与一个抽奖游戏,规则如下:有张纸牌,它们的背面都是小猪佩奇头像,正面为张笑脸、张哭脸.现将张纸牌洗匀后背面朝上摆放到桌上,然后让消费者去翻纸牌.
(1)现小杨有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖,她从中随机翻开一张纸牌,小杨获奖的概率是________.
(2)如粜小杨、小月都有翻两张牌的机会,小杨先翻一张,放回后再翻一张;小月同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们谁获奖的机会更大些?通过画树状图或列表法分析说明理由.
22.(8分)如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求AB和BC.
23.(8分)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
24.(8分)某校3男2女共5名学生参加黄石市教育局举办的“我爱黄石”演讲比赛.
(1)若从5名学生中任意抽取3名,共有多少种不同的抽法,列出所有可能情形;
(2)若抽取的3名学生中,某男生抽中,且必有1女生的概率是多少?
25.(10分)在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.
小明画出树形图如下:
小华列出表格如下:
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为 ;
(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?
26.(10分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.
(1)求证:△ABE∽△DEF.
(2)若正方形的边长为4,求BG的长.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、D
4、D
5、C
6、B
7、B
8、B
9、A
10、C
二、填空题(每小题3分,共24分)
11、.
12、
13、2
14、6+2x<1
15、5-5
16、1
17、1
18、3
三、解答题(共66分)
19、(1),;(2),.
20、(1)证明见解析;(2)PA+PB=PF+FC=PC;(3)1+.
21、(1);(2)小月获奖的机会更大些,理由见解析
22、AB=2,BC= .
23、(1)y=x,;(2)存在,Q1(2,1)和Q2(﹣2,﹣1);(3)2+1
24、(1)共有10种不同的抽法,分别是:男男男,男男女,男男女,男男女,男男女,男女女,男男女,男男女,男女女,男女女;(2)
25、(1)放回
(2)(3,2)
(3)小明获胜的可能性大.理由见解析
26、(1)见解析;(2)BG=BC+CG=1.
第一次
第二次
1
2
3
4
1
(1,1)
(2,1)
(3,1)
(4,1)
2
(1,2)
(2,2)
①
(4,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
2023-2024学年广东省广州市白云区九上数学期末复习检测模拟试题含答案: 这是一份2023-2024学年广东省广州市白云区九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,二次函数图象如图,下列结论等内容,欢迎下载使用。
广东省东莞市四海教育集团六校联考2023-2024学年九上数学期末检测模拟试题含答案: 这是一份广东省东莞市四海教育集团六校联考2023-2024学年九上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年广东省东莞市四海教育集团六校联考数学九上期末教学质量检测试题含答案: 这是一份2023-2024学年广东省东莞市四海教育集团六校联考数学九上期末教学质量检测试题含答案,共8页。试卷主要包含了定义等内容,欢迎下载使用。