所属成套资源:北师大版九年级数学上册基础知识精品专项讲练
北师大版九年级数学上册基础知识专项讲练 专题6.7 反比例函数与面积问题(知识讲解)
展开
这是一份北师大版九年级数学上册基础知识专项讲练 专题6.7 反比例函数与面积问题(知识讲解),共13页。
1. 能根据反比例函数图象求出其面积,或据面积求出解析式;.
2. 掌握并运用K值的几何意义解决问题;.
3. 充分利用数形结合思想解决问题。
【要点梳理】
反比例函数()中的比例系数的几何意义
过双曲线() 上任意一点作轴、轴的垂线,所得矩形的面积为.
过双曲线() 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为.
特别说明:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.
【典型例题】
类型一、已知比例系数求特殊四边形面积
1. 如图,在平面直角坐标系中,四边形OABC为矩形,点B在函数y1=(x>0)的图象上,边AB与函数y2=(x>0)的图象交于点D.求四边形ODBC的面积.
【答案】3
【分析】根据反比例函数k的几何意义可知:△AOD的面积为1,矩形ABCO的面积为4,从而可以求出阴影部分ODBC的面积.
解:∵点D是函数y2=(x>0)图象上的一点,
∴△AOD的面积为,
∵点B在函数y1=(x>0)的图象上,四边形ABCO为矩形,
∴矩形ABCO的面积为4,
∴阴影部分ODBC的面积=矩形ABCO的面积-△AOD的面积=4-1=3,
故选:B.
【点拨】本题考查反比例函数的几何意义,解题的关键是正确理解的几何意义.
举一反三:
【变式1】如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A,C两点,过点A作x轴的垂线交x轴于点B,连接BC,则的面积等于多少?
【答案】4
【分析】由于点A、C位于反比例函数图象上且关于原点对称,则S△OBA=S△OBC,再根据反比例函数系数k的几何意义作答即可.
解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,
即S=|k|.
所以△ABC的面积等于2×|k|=|k|=4.
【点拨】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.
【变式2】已知,反比例函数和的部分图象如图所示,点P在上,PC垂直x轴于点C,交于点A(2,1),PD垂直y轴于点D,交于点B,连接OA,OB.
(1)求B点和P点的坐标;
(2)求四边形AOBP的面积.
【答案】(1)B点的坐标为(,3),P点的坐标为(2,3);(3)4
【分析】(1)由题意可知,P点的横坐标与A(2,1)相同,纵坐标与B相同,分别代入反比例解析式,得到点P和点B的坐标;
(2)由题意,利用矩形的面积减去两个三角形的面积,即可得到答案.
解:(1)由题意知,P点的横坐标与A(2,1)相同,纵坐标与B相同,
∵P点在上,把代入得,
∴P点的坐标为(2,3),B点的纵坐标为3.
又∵B点在上,把代入得,
∴B点的坐标为(,3),P点的坐标为(2,3).
(2)如图,由(1)知OC=2,OD=3,AC=1,BD=,
用S表示图形的面积,由题意得:
,
,
,
=4.
【点拨】本题考查了反比例函数的图像和性质,矩形的性质,以及利用间接法求四边形的面积,解题的关键是熟练掌握反比例函数的性质进行解题.
类型二、已知面积求比例系数或解析式
2. 如图所示,已知双曲线,经过Rt△OAB斜边OB的中点D,与直角边AB交于点C,DE⊥OA,,求反比例函数的解析式.
【答案】
【分析】过点D作DM⊥AB于点M,利用三角形中位线定理可得 , ,然后证明△BDM≌△DOE,从而得到,,最后设D(),则B(),利用反比例函数的几何意义可得,从而得到,即可求解.
解:过点D作DM⊥AB于点M,
∵AB⊥OA,
∴ DM∥OA,
∴ ∠BDM=∠BOA, ,
∵D是斜边OB的中点,DE⊥OA,
∴OD=DB, ,
在△BDM和△EOD中
∴△BDM≌△DOE(AAS),
∴,.
设D(),则B().
∵,
∴.
即,解得:.
∴反比例函数的解析式为.
【点拨】本题主要考查了反比例函数的几何意义,三角形全等的判定和性质,三角形的中位线定理,熟练掌握反比例函数的几何意义,三角形的中位线定理是解题的关键.
举一反三:
【变式1】如图,点A,B关于y轴对称,S△AOB=8,点A在双曲线y=,求k的值.
【答案】k=﹣4.
【分析】记AB与y轴的交点为C,先据轴对称求得S△AOC的面积,由反比例函数系数的几何意义,即可求出2k的绝对值,再根据反比例函数在第二象限有图象即可确定2k符号.求得2k的值,再除以2可得k值.
解:如下图,记AB与y轴的交点为C,
∵点A,B关于y轴对称,
∴AB垂直于y轴,且AC=BC,
∴S△AOC=S△AOB=,
∵S△AOC=|2k|,
∴|2k|=4,
∴
∵在第二象限,
∴2k=﹣8
∴k=﹣4.
【点拨】本题考查了反比例函数系数的几何意义,求得S△AOC=4和利用反比例函数系数的几何意义求出k值是解题的关键.
【变式2】如图,直线x=t(t>0)与双曲线y=(k1>0)交于点A,与双曲线y=(k2
相关试卷
这是一份人教版九年级数学下册基础知识专项讲练 专题26.9 反比例函数与面积问题(巩固篇)(专项练习),共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版九年级数学下册基础知识专项讲练 专题26.1 反比例函数(知识讲解),共10页。
这是一份北师大版九年级数学上册基础知识专项讲练 专题6.10 反比例函数的应用(知识讲解),共16页。