所属成套资源:北师大版九年级数学上册基础知识精品专项讲练
北师大版九年级数学上册基础知识专项讲练 专题1.5 矩形的性质与判定(知识讲解)
展开这是一份北师大版九年级数学上册基础知识专项讲练 专题1.5 矩形的性质与判定(知识讲解),共35页。
1. 理解矩形的概念;
2. 掌握矩形的性质定理与判定定理;
3. 掌握直角三角形斜边上的中线等于斜边一半;
4. 能力要求:利用矩形的性质解决折叠问题、最值问题、坐标系下的矩形问题。
【要点梳理】
要点一、矩形的定义
有一个角是直角的平行四边形叫做矩形.
特别说明:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.
要点二、矩形的性质
矩形的性质包括四个方面:
1.矩形具有平行四边形的所有性质;
2.矩形的对角线相等;
3.矩形的四个角都是直角;
4.矩形是轴对称图形,它有两条对称轴.
特别说明:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.
(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).
(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.
要点三、矩形的判定
矩形的判定有三种方法:
1.定义:有一个角是直角的平行四边形叫做矩形.
2.对角线相等的平行四边形是矩形.
3.有三个角是直角的四边形是矩形.
特别说明:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.
要点四、直角三角形斜边上的中线的性质
直角三角形斜边上的中线等于斜边的一半.
特别说明:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.
(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.
(3)性质可以用来解决有关线段倍分的问题.
【典型例题】
类型一、矩形性质的理解
1.已知,如图,四边形ABCD是矩形,AD>AB.
(1)请用无刻度的直尺和圆规在AD上找一点E,使得EC平分∠BED;(不要求写作法,但要保留作图痕迹)
(2)在(1)的条件下,若AB=3,DE=1,求△BEC的面积.
【答案】(1)见分析 (2)△BEC的面积为7.5.
【分析】
(1)以B为圆心,BC长为半径画弧交AD于点E即可;
(2)由(1)可得BC=BE,设BC=x,则AE=x-1,根据勾股定理即可求出x,进而求出△BEC的面积.
(1)
解:如图,以B为圆心,BC长为半径画弧交AD于点E;
(2)解:由(1)可知BC=BE,设BC=x,则AE=x-1,
在△ABE中,∠A=90°,
∴AB2+AE2=BE2,
故32+(x-1)2=x2,
解得x=5,
∴△BEC的面积为×5×3=7.5.
【点拨】本题考查了作图-复杂作图、矩形的性质、平行线的性质、等腰三角形的性质,解决本题的关键是掌握矩形的性质.
【变式1】矩形具有而菱形不一定具有的性质是( )
A.两组对边分别平行B.对角线相等
C.对角线互相垂直D.对角线平分一组对角
【答案】B
【分析】根据矩形和菱形的性质得出即可.
解:A.因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的两组对边分别平行,故A不符合题意;
B.矩形的对角线相等,而菱形不是,故B符合题意;
C.菱形的对角线对角线互相垂直,而矩形不是,故C不符合题意;
D.菱形的对角线平分对角,而矩形不是,故D不符合题意;
故选:B.
【点拨】本题考查了矩形与菱形的性质,解题的关键是熟练掌握矩形与菱形的性质.
【变式2】如图,在五边形ABCDE中,,,,连接CE,BD.若且,则的面积为______.
【答案】
【分析】作出BC边上的垂线DF和EG,DF无法直接计算,DF是△CDF的一条边,而△EGC和△CDF已有边CE=CD,∠EGC=∠CFD=90°,若两三角形全等便可求出DF的长.
解:如下图过E作EG⊥BC于G,过D作DF⊥BC延长线于F,
∵∠A=∠ABC=90°,EG⊥BC,
∴ABGE是矩形,BG=AE=,
∴CG=BC-BG=6-=,
∵CE⊥CD,
∴∠ECG+∠DCF=90°,
∵∠ECG+∠CEG=90°,
∴∠CEG=∠DCF,
∵CE=DC,∠EGC=∠CFD,
∴△EGC≌△CFD(AAS),
∴DF=CG=,
S△BCD=×6×=,
故答案为:.
【点拨】本题考查全等三角形的判定,矩形的性质和判定,三角形的面积计算,正确作出辅助线找出高与已知条件的关系是解题的关键.
类型二、利用矩形的性质求角
2.如图,四边形ABCD中,对角线AC、BD相交于点O,,,且∠ABC=90°.
(1)求证:四边形ABCD是矩形.
(2)若∠ACB=30°,AB=1,求①∠AOB的度数;②四边形ABCD的面积.
【答案】(1)见分析;(2)①60°,②.
【分析】
(1)根据AO=CO,BO=DO可知四边形ABCD是平行四边形,又∠ABC=90°,可证四边形ABCD是矩形
(2)利用直角△ABC中∠ABC=90°,∠ACB=300,可得∠BAC=60°,AC=2,BC=,即可求得四边形ABCD的面积,同时利用矩形的性质,对角线相等且互相平分,可得∠AOB=180°-2∠BAC
解:(1)∵AO=CO,BO=DO
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,
∵∠ABC=90°,
∴四边形ABCD是矩形;
(2)∵∠ABC=90°,∠ACB=300,AB=1
∴∠BAC=60°,AC=2,BC=
又∵矩形ABCD中,OA=OB
∴∠AOB=180°-2∠BAC=60°
S□ABCD=1×=
【点拨】本题考查了矩形的判定及性质定理的应用,会灵活运用是解题的关键.
【变式1】如图,在矩形中,对角线与相交于点,若,那么的度数是( )
A.B.C.D.
【答案】D
【分析】根据题意只要证明OA=OD,根据三角形的外角的性质即可解决问题.
解:∵矩形ABCD中,对角线AC,BD相交于点O,
∴DB=AC,OD=OB,OA=OC,
∴OA=OD,
∴∠CAD=∠ADO,
∵∠COD=50°=∠CAD+∠ADO,
∴∠CAD=25°,
故选D.
【点拨】本题考查了矩形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
【变式2】如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.
【答案】22.5°
解:四边形ABCD是矩形,
AC=BD,OA=OC,OB=OD,
OA=OB═OC,
∠OAD=∠ODA,∠OAB=∠OBA,
∠AOE=∠OAD+∠ODA=2∠OAD,
∠EAC=2∠CAD,
∠EAO=∠AOE,
AE⊥BD,
∠AEO=90°,
∠AOE=45°,
∠OAB=∠OBA=67.5°,
即∠BAE=∠OAB﹣∠OAE=22.5°.
类型三、利用矩形的性质求线段
3.如图,在矩形中,点在上,,且,垂足为.
(1)求证:;
(2)若,求四边形的面积.
【答案】(1)见详解;(2)4-8
【分析】
(1)由矩形的性质可得∠D=90°,AB∥CD,从而得∠D=∠ANB,∠BAN=∠AMD,进而即可得到结论;
(2)由以及勾股定理得AN=DM=4,AB=,进而即可求解.
解:(1)∵在矩形中,
∴∠D=90°,AB∥CD,
∴∠BAN=∠AMD,
∵,
∴∠ANB=90°,即:∠D=∠ANB,
又∵,
∴(AAS),
(2)∵,
∴AN=DM=4,
∵,
∴,
∴AB=,
∴矩形的面积=×2=4,
又∵,
∴四边形的面积=4-4-4=4-8.
【点拨】本题主要考查矩形的性质,勾股定理,全等三角形的判定和性质,熟练掌握AAS证明三角形全等,是解题的关键.
【变式1】如图,点O是矩形ABCD的对角线AC的中点,OM//AB交AD于点M,若OM=3,BC=10,则OB的长为( )
A.5B.4C.D.
【答案】D
【分析】如图所示,连接OD,先求出,然后利用勾股定理求解即可.
解:如图所示,连接OD,
∵四边形ABCD是矩形,
∴OA=OD,∠BAD=90°,
∵OM∥AB,
∴∠OMD=90°,
∴,
∴
故选D.
【点拨】本题主要考查了矩形的性质,等腰三角形的性质与判定,勾股定理,正确作出辅助线是解题的关键.
【变式2】如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.
【答案】
【分析】首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
解:设△ABP中AB边上的高是h.
∵S△PAB=S矩形ABCD,
∴AB•h=AB•AD,
∴h=AD=2,
∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.
在Rt△ABE中,∵AB=4,AE=2+2=4,
∴BE=,
即PA+PB的最小值为.
故答案为:.
【点拨】本题考查了轴对称——最短路线问题、三角形的面积、矩形的性质、勾股定理和两点之间线段最短的性质,其中得出动点P所在的位置是解题的关键.
类型四、利用矩形的性质求面积
4.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
【答案】(1)证明见分析;(2)矩形ABCD的面积为
【分析】
(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;
(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的长,即可得出矩形ABCD的面积.
解:(1)∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,∠ABC=90°,
∵BE=DF,
∴OE=OF,
在△AOE和△COF中,
∵OA=OC,∠AOE=∠COF,OE=OF,
∴△AOE≌△COF(SAS),
∴AE=CF;
(2)解:∵OA=OC,OB=OD,AC=BD,
∴OA=OB,
∵∠AOB=∠COD=60°,
∴△AOB是等边三角形,
∴OA=AB=6,
∴AC=2OA=12,
在Rt△ABC中,BC==6,
∴矩形ABCD的面积=AB•BC=6×6=36.
【点拨】此题考查了矩形的性质,等边三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,等边三角形的性质和判定,勾股定理的运用.
【变式1】如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为( )
A.10B.12C.16D.18
【答案】C
【分析】首先根据矩形的特点,作PM⊥AD于M,交BC于N,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.
解:作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN
∴S矩形EBNP= S矩形MPFD ,
又∵S△PBE= S矩形EBNP,S△PFD=S矩形MPFD,
∴S△DFP=S△PBE=×2×8=8,
∴S阴=8+8=16,
故选:C.
【点拨】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.
【变式2】如图,矩形ABCD中,E、F分别为AD、AB上一点,且EF=EC,EF⊥EC,若DE=2,矩形周长为16,则矩形ABCD的面积为_________
【答案】15
解:因为EF⊥EC,所以∠FEC=90°,所以∠AEF+∠DEC=90°,因为∠AEF+∠AFE=90°,所以∠AFE=∠DEC,因为∠A=∠D,EF=CE,所以△AEF≌△DCE,所以AE=CD,AF=DE,设AB=CD=x,则AD=AE+DE=CD+DE=x+2,所以2(x+x+2)=16,解得x=3,所以AB×BC=3×(3+2)=15,故答案为15.
类型五、利用矩形的性质和判定证明
5.如图,矩形ABCD的对角线相交于点O,DE//AC,CE//BD,
求证:四边形OCED是菱形.
【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.
解:∵DE//AC,CE//BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OC=OD=AC=BD
∴四边形OCED是菱形.
【变式1】如图,矩形的对角线与交于点,过点作的垂线分别交、于、两点,若,,则的长度为( )
A.1B.2C.D.
【答案】B
【分析】根据三角形外角性质可求出∠EDO=30°,从而可求出∠DEO=60°,再根据矩形的性质,推理得到OF=CF,最后在Rt△BOF中利用勾股定理求得OF的长,即可得到CF的长.
解:∵EF⊥BD,∠AEO=120°,
∴∠EDO=30°,∠DEO=60°,
∵四边形ABCD是矩形,
∴∠OBF=∠OCF=30°,∠BFO=60°,
∴∠FOC=60°-30°=30°,BF=2OF,
∴OF=CF,
又∵BO=BD=AC=2,
∴在Rt△BOF中,BO2+OF2=(2OF)2,
∴(2)2+OF2=4OF2,
∴OF=2,
∴CF=2,
故选:B.
【点拨】本题主要考查了三角形外角的性质,矩形的性质,含30°角的直角三角形的性质以及勾股定理的运用,解决问题的关键是掌握矩形的对角线相等且互相平分.
【变式2】如图,矩形ABCD中,,点Q在对角线AC上,且,连接DQ并延长,与边BC交于点P,则线段AP=_________.
【答案】
解:∵矩形ABCD中,AB=4,AD=3=BC,
∴AC=5,
又∵AQ=AD=3,ADCP,
∴CQ=5-3=2,∠CQP=∠AQD=∠ADQ=∠CPQ,
∴CP=CQ=2,
∴BP=3-2=1,
∴Rt△ABP中,AP=
故答案为:
类型六 直角三角形斜边上中线问题
6.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
【答案】(1)证明见分析;(2)
【分析】
(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论;
(2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到,再由MN=BM=1,得到BN的长.
解:(1)在△CAD中,∵M、N分别是AC、CD的中点,
∴MN∥AD,且MN=AD,
在Rt△ABC中,∵M是AC的中点,
∴BM=AC,
又∵AC=AD,
∴MN=BM;
(2)∵∠BAD=60°且AC平分∠BAD,
∴∠BAC=∠DAC=30°,
由(1)知,BM=AC=AM=MC,
∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.
∵MN∥AD,
∴∠NMC=∠DAC=30°,
∴∠BMN=∠BMC+∠NMC=90°,
∴,
而由(1)知,MN=BM=AC=×2=1,
∴BN=.
【变式1】如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是( )
A.20°B.25°C.30°D.40°
【答案】A
【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH⊥CD,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数.
解:∵四边形ABCD是菱形,
∴OD=OB,AB∥CD,BD⊥AC,
∵DH⊥AB,
∴DH⊥CD,∠DHB=90°,
∴OH为Rt△DHB的斜边DB上的中线,
∴OH=OD=OB,
∴∠1=∠DHO,
∵DH⊥CD,
∴∠1+∠2=90°,
∵BD⊥AC,
∴∠2+∠DCO=90°,
∴∠1=∠DCO,
∴∠DHO=∠DCA,
∵四边形ABCD是菱形,
∴DA=DC,
∴∠CAD=∠DCA=20°,
∴∠DHO=20°,
故选A.
【点拨】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
【变式2】如图,平行四边形中,于,点为边中点,,,则_________
【答案】
【分析】延长、交于点,连接FC,先依据全等的判定和性质得到,依据直角三角形斜边上的中线等于斜边的一半,得到,依据平行四边形的对边相等及等量代换得到,依据三角形等边对等角得到、,依据三角形内角和得到,通过作差即得所求.
解:延长、交于点,连接FC,
∵平行四边形中,
∴,,,
∴,,,
又∵点为边中点,得,
∴≌(ASA),,
∴,
∴,
∴,
∴,
∵,,,,
∴,
∴,
∴,
∴,
故答案为:.
【点拨】本题考查了平行四边形的性质、全等的判定和性质、直角三角形斜边上的中线等于斜边的一半、三角形等边对等角、三角形内角和,解题的关键是构造直角三角形.
类型七、矩形性质与判定定理的理解
7.如图,,且,是的中点.
(1)求证:四边形是平行四边形;
(2)连接、,写出添加一个什么条件时,四边形是矩形.并说明理由.
【答案】(1)证明见分析;(2)添加,理由见分析.
【分析】
(1)证明,结合已知条件,利用一组对边平行且相等的四边形是平行四边形,即可得到结论;
(2)由矩形的性质逆推出要添加的条件,再根据添加的条件证明四边形是矩形即可得到答案.
解:(1)∵是中点,
∴.
∵,
∴.
又∵,
∴四边形是平行四边形.
(2)解:添加,理由如下:
连接、,如图,
∵,,
∴四边形是平行四边形.
∵,,
∴.
∴四边形是矩形.
【点拨】本题考查的是平行四边形的性质,矩形的判定,掌握以上知识是解题的关键.
【变式1】下列命题正确的是( )
A.有一个角是直角的平行四边形是矩形 B.四条边相等的四边形是矩形
C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形
【答案】A
【分析】运用矩形的判定定理,即可快速确定答案.
解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.
【点拨】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.
【变式2】如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快___s后,四边形ABPQ成为矩形.
【答案】4
【分析】设最快x秒,当BP=AQ时,四边形ABPQ成为矩形,设最快x秒,则4x=20﹣2x.解方程可得.
解:设最快x秒,四边形ABPQ成为矩形,由BP=AQ得
3x=20﹣2x.
解得x=4.
故答案为4
【点拨】本题考核知识点:平行四边形性质,矩形判定.解题关键点:熟记平行四边形性质,矩形判定.
类型八、添加一个条件构成矩形
8.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;②当AM的值为 时,四边形AMDN是菱形.
【答案】(1)见分析(2)①1;②2
【分析】
(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;
(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;
②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.
解:(1)∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
又∵点E是AD边的中点,
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四边形AMDN是平行四边形;
(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:
∵AM=1=AD,
∵点E是AD边的中点,
∴DE=AE=AM=1,
∵∠DAM=60°,
∴ME=DE=AM,
∴∠ADM=∠EMD,∠AEM=60°,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四边形AMDN是矩形;
②当AM的值为2时,四边形AMDN是菱形.理由如下:
∵AM=2,
∴AM=AD=2,
∠DAM=60°,
∴△AMD是等边三角形,
∴AM=DM,
∴平行四边形AMDN是菱形.
【变式1】已知中,下列条件:①;②;③;④平分,其中能说明是矩形的是( )
A.①B.②C.③D.④
【答案】B
【分析】根据矩形的判定进行分析即可.
解:A. ,邻边相等的平行四边形是菱形,故A错误;
B. ,对角线相等的平行四边形是矩形,故B正确;
C. ,对角线互相垂直的平行四边形是菱形,故C错误;
D. 平分,对角线平分其每一组对角的平行四边形是菱形,故D错误.
故选:B.
【点拨】本题考查了矩形的判定,熟知矩形从边,角,对角线三个方向的判定是解题的关键.
【变式2】如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____,使四边形ABCD为矩形.
【答案】∠B=90°
【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.
解:∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,
∴AB=CD,∠BAC=∠DCA,
∴AB∥CD,
∴四边形ABCD为平行四边形,
当∠B=90°时,平行四边形ABCD为矩形,
∴添加的条件为∠B=90°.
故答案为∠B=90°.
【点拨】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.
类型九、证明四边形是矩形
9.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
【答案】(1)证明见分析;(2).
【分析】
(1)根据矩形ABCD的性质,判定△BOE≌△DOF(ASA),进而得出结论;
(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.
解:(1)∵四边形ABCD是矩形,O是BD的中点,
∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
∴∠OBE=∠ODF,
在△BOE和△DOF中,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,BD⊥EF,
设BE=x,则 DE=x,AE=6-x,
在Rt△ADE中,DE2=AD2+AE2,
∴x2=42+(6-x)2,
解得:x= ,
∵BD= =2,
∴OB=BD=,
∵BD⊥EF,
∴EO==,
∴EF=2EO=.
【点拨】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键
【变式1】如图,在△ABC中,点D在BC上,,下列四个判断中不正确的是( )
A.四边形AEDF是平行四边形
B.若∠BAC=90°,则四边形AEDF是矩形
C.若AD平分∠BAC,则四边形AEDF是矩形
D.若AD⊥BC且AB=AC,则四边形AEDF是菱形
【答案】C
【分析】根据题意,分别利用平行四边形及矩形,菱形的判定定理依次判断即可得.
解:A选项,∵在△ABC中,点D在BC上,,
∴,
∴四边形AEDF是平行四边形;即A正确;
B选项,∵四边形AEDF是平行四边形,∠BAC=90°,
∴四边形AEDF是矩形;即B正确;
C选项,∵添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;
D选项,∵由添加的条件“AB=AC,AD⊥BC”,
∴AD平分∠BAC,
∴∠EAD=∠CAD=∠EDA,
∴AE=DE,
∴四边形AEDF是菱形,所以D正确.
故选C.
【点拨】题目主要考查平行四边形及矩形,菱形的判定定理,熟练掌握各个判定定理是解题关键.
【变式2】如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).
【答案】①②④
【分析】根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.
解:∵四边形ABCD是平行四边形,
∴∠B=∠D,
∵根据折叠可得∠D=∠NMA,
∴∠B=∠NMA,
∴MN∥BC;①正确;
∵四边形ABCD是平行四边形,
∴DN∥AM,AD∥BC,
∵MN∥BC,
∴AD∥MN,
∴四边形AMND是平行四边形,
根据折叠可得AM=DA,
∴四边形AMND为菱形,
∴MN=AM;②④正确;
没有条件证出∠B=90°,④错误;
故答案为①②④.
【点拨】本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.
类型十、利用矩形的性质与判定求角度
10.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形;
(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.
【答案】(1)见分析;(2)∠BDF=18°.
【分析】
(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;
(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.
解:(1)∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADC=90°,
∴四边形ABCD是矩形;
(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,
∴∠FDC=36°,
∵DF⊥AC,
∴∠DCO=90°﹣36°=54°,
∵四边形ABCD是矩形,
∴CO=OD,
∴∠ODC=∠DCO=54°,
∴∠BDF=∠ODC﹣∠FDC=18°.
【点拨】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.
【变式1】如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )
A.68°B.20°C.28°D.22°
【答案】D
解:∵四边形ABCD为矩形,
∴∠BAD=∠ABC=∠ADC=90°,
∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,
∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,
∵∠2=∠1=112°,
而∠ABC=∠D′=90°,
∴∠3=180°-∠2=68°,
∴∠BAB′=90°-68°=22°,
即∠α=22°.
故选D.
【变式2】如图,在矩形ABCD中,AE⊥BD.若DE:BE=3:1,则∠EAO= __________.
【答案】30°
解:根据∠DAE:∠BAE=3:1以及∠DAE+∠BAE=90°可得:∠DAE=67.5°,根据AE⊥BD可得:∠ADE=22.5°,根据OA=OD可得:∠OAD=∠ADO=22.5°,则∠EAO=∠DAE-∠DAO=67.5°-22.5°=45°.
类型十一、利用矩形的性质与判定求线段
11.如图,在中,于点E点,延长BC至F点使,连接AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若,,,求AE的长.
【答案】(1)见分析;(2)
【分析】
(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.
(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.
解:(1)∵CF=BE,
∴CF+EC=BE+EC.
即 EF=BC.
∵在▱ABCD中,AD∥BC且AD=BC,
∴AD∥EF且AD=EF.
∴四边形AEFD是平行四边形.
∵AE⊥BC,
∴∠AEF=90°.
∴四边形AEFD是矩形;
(2)∵四边形AEFD是矩形,DE=8,
∴AF=DE=8.
∵AB=6,BF=10,
∴AB2+AF2=62+82=100=BF2.
∴∠BAF=90°.
∵AE⊥BF,
∴△ABF的面积=AB•AF=BF•AE.
∴AE=.
【变式1】如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为( )
A.8B.8C.4D.6
【答案】D
【分析】连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.
解:如图,连接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=30°,
∴∠FCA=30°,
∴∠FBC=30°,
∵FC=2,
∴BC=2,
∴AC=2BC=4,
∴AB===6,
故选D.
【点拨】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.
【变式2】如图,在矩形中,,对角线与相交于点,,垂足为点,且平分,则的长为_____.
【答案】.
【分析】由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AB的长.
解:∵四边形是矩形
∴,
∵平分
∴,且,,
∴≌()
∴,且
∴,
∴,
∵,
∴,
∴
故答案为.
【点拨】本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,熟练运用矩形的性质是本题的关键.
类型十二、利用矩形的性质与判定求面积
12.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.
(1)求证:四边形ABCD是矩形;
(2)若∠BDE=15°,求∠DOE;
(3)在(2)的条件下,若AB=2,求△BOE的面积.
【答案】(1)见分析;(2)135°;(3)
【分析】
(1)根据有三个角是直角是四边形是矩形判定即可;
(2)首先根据矩形的性质得出OD=OC,然后利用角平分线的定义得出△DCE是等腰直角三角形,进而得出△OCD是等边三角形,然后可得∠OCE=30°,再利用等腰三角形的性质和三角形内角和定理得出∠COE=∠CEO=75°,最后利用∠DOE=∠COD+∠COE即可求解;
(3)作OF⊥BC于F,首先根据三角形中位线的性质得出OF=1,然后利用勾股定理求出BC的长度,进而得出BE的长度,最后利用面积公式求解即可.
解:(1)∵ADBC,
∴∠ABC+∠BAD=180°,
∵∠ABC=90°,
∴∠BAD=90°,
∴∠BAD=∠ABC=∠ADC=90°,
∴四边形ABCD是矩形.
(2)由(1)可得:AO=CO,BO=DO,AC=BD,
∴OD=OC,
∵DE平分∠ADC,
∴∠CDE=45°,
∴△DCE是等腰直角三角形,
∴∠DEC=45°,CD=CE,
∵∠BDE=15°,
∴∠DBC=∠ADB=45°-15°=30°,
∴∠BDC=60°,又OD=OC,
∴△OCD是等边三角形,
∴OC=CD=CE,∠DCO=∠COD=60°,
∴∠OCE=30°,
∴∠COE=∠CEO=(180°-30°)÷2=75°,
∴∠DOE=∠COD+∠COE=60°+75°=135°;
(3)作OF⊥BC于F.
∵四边形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵EC=CD=AB=2,
∴AC=BD=4,
∴BC==,
∴BE=BC-CE=-2,
∴△BOE的面积= .
【点拨】本题主要考查四边形综合,掌握矩形的判定及性质,等腰三角形的性质和勾股定理是解题的关键.
【变式1】在矩形中,、相交于点,若的面积为2,则矩形的面积为( )
A.4B.6C.8D.10
【答案】C
【分析】根据矩形的性质得到OA=OB=OC=OD,推出,即可求出矩形ABCD的面积.
解:∵四边形ABCD是矩形,对角线、相交于点
∴AC=BD,且OA=OB=OC=OD
∴
∴矩形的面积为
故选:C
【点拨】此题考查矩形的性质:矩形的对角线相等,且互相平分,由此可以将矩形的面积四等分,由此可以解决问题,熟记矩形的性质定理是解题的关键.
【变式2】如图,矩形以点为圆心,以任意长为半径作弧分别交、于两点,再分别以点为圆心,以大于的长为半径作弧交于点,作射线交于点,若,则矩形的面积等于__________.
【答案】
【分析】根据矩形的性质得到∠B=∠BAD=90°,求得∠ACB=30°,由作图知,AP是∠BAC的平分线,得到∠BAE=∠CAE=30°,AB=,根据等腰三角形的性质求得AE=EC=2,解直角三角形得到BC=3,于是得到结论.
解:由题可知AP是∠BAC的角平分线
∵∠BAC=600
∴∠BAE=∠EAC=300
∴AE=2 BE=2.
∴AB=
∴∠AEB=600
又∵∠AEB=∠EAC+∠ECA
∴∠EAC=∠ECA=300
∴AE=EC=2
∴BC=3
∴S矩形ABCD=3.
【点拨】此题考查尺规作图,矩形的性质,解题关键在于求得AB=.
相关试卷
这是一份数学七年级下册3 同底数幂的除法精品课堂检测,共10页。
这是一份人教版九年级数学下册基础知识专项讲练 专题27.23 位似(知识讲解),共20页。
这是一份北师大版九年级数学上册基础知识专项讲练 专题1.8 矩形的性质与判定(拓展篇)(专项练习),共48页。试卷主要包含了单选题,折叠中的矩形问题,旋转中的矩形问题,解答题等内容,欢迎下载使用。