|试卷下载
搜索
    上传资料 赚现金
    2021年天津高考数学真题及答案
    立即下载
    加入资料篮
    2021年天津高考数学真题及答案01
    2021年天津高考数学真题及答案02
    2021年天津高考数学真题及答案03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年天津高考数学真题及答案

    展开
    这是一份2021年天津高考数学真题及答案,共12页。试卷主要包含了本卷共11小题,共105分,是公比大于0的等比数列,等内容,欢迎下载使用。

    注意事项:
    1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,
    2,本卷共9小题,每小题5分,共45分
    参考公式:
    •如果事件A、B互斥,那么.
    •如果事件A、B相互独立,那么.
    •球的体积公式,其中R表示球的半径.
    •圆锥的体积公式,其中S表示圆锥的底面面积,h表示圆锥的高.
    一、选择题,在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 设集合,则( )
    A. B. C. D.
    【参考答案】C
    2. 已知,则“”是“”的( )
    A. 充分不必要条件B. 必要不充分条件
    C. 充要条件D. 既不允分也不必要条件
    【参考答案】A
    3. 函数的图像大致为( )
    A. B.
    C. D.
    【参考答案】B
    4. 从某网络平台推荐的影视作品中抽取部,统计其评分分数据,将所得个评分数据分为组:、、、,并整理得到如下的费率分布直方图,则评分在区间内的影视作品数量是( )
    A. B. C. D.
    【参考答案】D
    5. 设,则a,b,c的大小关系为( )
    A. B. C. D.
    【参考答案】D
    6. 两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为( )
    A. B. C. D.
    【参考答案】B
    7. 若,则( )
    A. B. C. 1D.
    【参考答案】C
    8. 已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若.则双曲线的离心率为( )
    A. B. C. 2D. 3
    9. 设,函数,若在区间内恰有6个零点,则a的取值范围是( )
    A. B.
    C. D.
    【参考答案】A
    第II卷
    注意事项
    1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.
    2.本卷共11小题,共105分.
    二、填空题,本大题共6小题,每小题5分,共30分,试题中包含两个空的,答对1个的给3分,全部答对的给5分.
    10. 是虚数单位,复数_____________.
    【参考答案】
    【解】.
    11. 在的展开式中,的系数是__________.
    【参考答案】160
    【解】的展开式的通项为,
    令,解得,
    所以的系数是.
    12. 若斜率为的直线与轴交于点,与圆相切于点,则____________.
    【参考答案】
    【解】设直线的方程为,则点,
    由于直线与圆相切,且圆心为,半径为,
    则,解得或,所以,
    因为,故.
    13. 若,则的最小值为____________.
    【参考答案】
    【解】,

    当且仅当且,即时等号成立,
    所以的最小值为.
    14. 甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为和,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.
    【参考答案】 ①. ②.
    【解】由题可得一次活动中,甲获胜的概率为;
    则在3次活动中,甲至少获胜2次的概率为.
    15. 在边长为1的等边三角形ABC中,D为线段BC上的动点,且交AB于点E.且交AC于点F,则的值为____________;的最小值为____________.
    【参考答案】 ①. 1 ②.
    【解】设,,为边长为1的等边三角形,,

    ,为边长为的等边三角形,,



    所以当时,的最小值为.
    三、解答题,本大题共5小题,共75分,解答应写出文字说明,证明过程成演算步骤.
    16. 在,角所对的边分别为,已知,.
    (I)求a的值;
    (II)求的值;
    (III)求的值.
    【参考答案】(I);(II)(III)
    【解】(I)因为,由正弦定理可得,
    ,;
    (II)由余弦定理可得;
    (III),,
    ,,
    所以.
    17. 如图,在棱长为2的正方体中,E为棱BC的中点,F为棱CD的中点.
    (I)求证:平面;
    (II)求直线与平面所成角正弦值.
    (III)求二面角的正弦值.
    【参考答案】(I)证明见解析;(II);(III)
    【解】(I)以为原点,分别为轴,建立如图空间直角坐标系,
    则,,,,,,,
    因为E为棱BC的中点,F为棱CD的中点,所以,,
    所以,,,
    设平面的一个法向量为,
    则,令,则,
    因为,所以,
    因为平面,所以平面;
    (II)由(1)得,,
    设直线与平面所成角为,
    则;
    (III)由正方体的特征可得,平面的一个法向量为,
    则,
    所以二面角的正弦值为.
    18. 已知椭圆的右焦点为,上顶点为,离心率为,且.
    (1)求椭圆的方程;
    (2)直线与椭圆有唯一的公共点,与轴的正半轴交于点,过与垂直的直线交轴于点.若,求直线的方程.
    【参考答案】(1);(2).
    【解】(1)易知点、,故,
    因为椭圆的离心率为,故,,
    因此,椭圆的方程为;
    (2)设点为椭圆上一点,
    先证明直线的方程为,
    联立,消去并整理得,,
    因此,椭圆在点处的切线方程为.
    在直线的方程中,令,可得,由题意可知,即点,
    直线的斜率为,所以,直线的方程为,
    在直线方程中,令,可得,即点,
    因为,则,即,整理可得,
    所以,,因为,,故,,
    所以,直线的方程为,即.
    19. 已知是公差为2的等差数列,其前8项和为64.是公比大于0的等比数列,.
    (I)求和的通项公式;
    (II)记,
    (i)证明是等比数列;
    (ii)证明
    【参考答案】(I),;(II)(i)证明见解析;(ii)证明见解析.
    【解】(I)因为是公差为2的等差数列,其前8项和为64.
    所以,所以,
    所以;
    设等比数列的公比为,
    所以,解得(负值舍去),
    所以;
    (II)(i)由题意,,
    所以,
    所以,且,
    所以数列是等比数列;
    (ii)由题意知,,
    所以,
    所以,
    设,
    则,
    两式相减得,
    所以,
    所以.
    20. 已知,函数.
    (I)求曲线在点处的切线方程:
    (II)证明存在唯一的极值点
    (III)若存在a,使得对任意成立,求实数b的取值范围.
    【参考答案】(I);(II)证明见解析;(III)
    【解】(I),则,
    又,则切线方程为;
    (II)令,则,
    令,则,
    当时,,单调递减;当时,,单调递增,
    当时,,,当时,,画出大致图像如下:
    所以当时,与仅有一个交点,令,则,且,
    当时,,则,单调递增,
    当时,,则,单调递减,
    为的极大值点,故存在唯一的极值点;
    (III)由(II)知,此时,
    所以,
    令,
    若存在a,使得对任意成立,等价于存在,使得,即,
    ,,
    当时,,单调递减,当时,,单调递增,
    所以,故,
    所以实数b的取值范围.
    相关试卷

    2023年新高考天津数学高考真题试卷及答案: 这是一份2023年新高考天津数学高考真题试卷及答案,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年高考真题——数学(天津卷)无答案: 这是一份2023年高考真题——数学(天津卷)无答案,共5页。

    _2023年天津高考数学真题及答案: 这是一份_2023年天津高考数学真题及答案,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map