_2023年天津高考数学真题及答案
展开2023年天津高考数学真题及答案
一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 已知集合,则( )
A. B.
C. D.
2. “”是“”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分又不必要条件
3. 若,则的大小关系为( )
A. B.
C D.
4. 函数的图象如下图所示,则的解析式可能为( )
A B.
C. D.
5. 已知函数的一条对称轴为直线,一个周期为4,则的解析式可能为( )
A. B.
C. D.
6. 已知为等比数列,为数列的前项和,,则的值为( )
A. 3 B. 18 C. 54 D. 152
7. 调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数,下列说法正确的是( )
A. 花瓣长度和花萼长度没有相关性
B. 花瓣长度和花萼长度呈现负相关
C. 花瓣长度和花萼长度呈现正相关
D. 若从样本中抽取一部分,则这部分的相关系数一定是
8. 在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为( )
A. B. C. D.
9. 双曲线的左、右焦点分别为.过作其中一条渐近线的垂线,垂足为.已知,直线的斜率为,则双曲线的方程为( )
A. B.
C. D.
二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.
10. 已知是虚数单位,化简的结果为_________.
11. 在的展开式中,项的系数为_________.
12. 过原点一条直线与圆相切,交曲线于点,若,则的值为_________.
13. 甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为.这三个盒子中黑球占总数的比例分别为.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.
14. 在中,,,点为的中点,点为的中点,若设,则可用表示为_________;若,则的最大值为_________.
15. 若函数有且仅有两个零点,则的取值范围为_________.
三、解答题:本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤.
16. 在中,角所对边分別是.已知.
(1)求的值;
(2)求的值;
(3)求.
17. 三棱台中,若面,分别是中点.
(1)求证://平面;
(2)求平面与平面所成夹角余弦值;
(3)求点到平面的距离.
18. 设椭圆的左右顶点分别为,右焦点为,已知.
(1)求椭圆方程及其离心率;
(2)已知点是椭圆上一动点(不与端点重合),直线交轴于点,若三角形的面积是三角形面积的二倍,求直线的方程.
19. 已知是等差数列,.
(1)求的通项公式和.
(2)已知为等比数列,对于任意,若,则,
(Ⅰ)当时,求证:;
(Ⅱ)求的通项公式及其前项和.
20. 已知函数.
(1)求曲线在处切线的斜率;
(2)当时,证明:;
(3)证明:.
参考答案
一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 【答案】A
2. 【答案】B
3. 【答案】D
4. 【答案】D
5. 【答案】B
6. 【答案】C
7. 【答案】C
8. 【答案】B
9. 【答案】D
二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.
10.【答案】
11.【答案】
12.【答案】
13.【答案】 ①. ②.
14.【答案】 ①. ②.
15. 【答案】
三、解答题:本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤.
16. 在中,角所对的边分別是.已知.
(1)求的值;
(2)求的值;
(3)求.
【答案】(1)
(2)
(3)
【小问1详解】
由正弦定理可得,,即,解得:;
【小问2详解】
由余弦定理可得,,即,
解得:或(舍去).
【小问3详解】
由正弦定理可得,,即,解得:,而,
所以都为锐角,因此,,
故.
17. 三棱台中,若面,分别是中点.
(1)求证://平面;
(2)求平面与平面所成夹角的余弦值;
(3)求点到平面的距离.
【答案】(1)证明见解析
(2)
(3)
小问1详解】
连接.由分别是的中点,根据中位线性质,//,且,
由棱台性质,//,于是//,由可知,四边形是平行四边形,则//,
又平面,平面,于是//平面.
【小问2详解】
过作,垂足为,过作,垂足为,连接.
由面,面,故,又,,平面,则平面.
由平面,故,又,,平面,于是平面,
由平面,故.于是平面与平面所成角即.
又,,则,故,在中,,则,
于是
【小问3详解】
[方法一:几何法]
过作,垂足为,作,垂足为,连接,过作,垂足为.
由题干数据可得,,,根据勾股定理,,
由平面,平面,则,又,,平面,于是平面.
又平面,则,又,,平面,故平面.
在中,,
又,故点到平面的距离是到平面的距离的两倍,
即点到平面的距离是.
[方法二:等体积法]
辅助线同方法一.
设点到平面的距离为.
,
.
由,即.
18. 设椭圆的左右顶点分别为,右焦点为,已知.
(1)求椭圆方程及其离心率;
(2)已知点是椭圆上一动点(不与端点重合),直线交轴于点,若三角形的面积是三角形面积的二倍,求直线的方程.
【答案】(1)椭圆的方程为,离心率为.
(2).
【小问1详解】
如图,
由题意得,解得,所以,
所以椭圆的方程为,离心率为.
【小问2详解】
由题意得,直线斜率存在,由椭圆的方程为可得,
设直线的方程为,
联立方程组,消去整理得:,
由韦达定理得,所以,
所以,.
所以,,,
所以,
所以,即,
解得,所以直线的方程为.
19. 已知是等差数列,.
(1)求的通项公式和.
(2)已知为等比数列,对于任意,若,则,
(Ⅰ)当时,求证:;
(Ⅱ)求的通项公式及其前项和.
【答案】(1),;
(2)(Ⅰ)证明见解析;(Ⅱ),前项和为.
【小问1详解】
由题意可得,解得,
则数列的通项公式为,
注意到,从到共有项,
故.
小问2详解】
(Ⅰ)由题意可知,当时,,
取,则,即,
当时,,
取,此时,
据此可得,
综上可得:.
(Ⅱ)由(Ⅰ)可知:,
据此猜测,
否则,若数列的公比,则,
注意到,则不恒成立,即不恒成立,
此时无法保证,
若数列的公比,则,
注意到,则不恒成立,即不恒成立,
此时无法保证,
综上,数列的公比为,则数列的通项公式为,
其前项和为:.
20. 已知函数.
(1)求曲线在处切线的斜率;
(2)当时,证明:;
(3)证明:.
【答案】(1)
(2)证明见解析 (3)证明见解析
【小问1详解】
,则,
所以,故处的切线斜率为;
【小问2详解】
要证时,即证,
令且,则,
所以在上递增,则,即.
所以时.
【小问3详解】
设,,
则,
由(2)知:,则,
所以,故在上递减,故;
下证,
令且,则,
当时,递增,当时,递减,
所以,故在上恒成立,
则,
所以,,…,,
累加得:,而,则,
所以,故;
综上,,即.
2021年天津高考数学真题及答案: 这是一份2021年天津高考数学真题及答案,共12页。试卷主要包含了本卷共11小题,共105分,是公比大于0的等比数列,等内容,欢迎下载使用。
2023年新高考天津数学高考真题试卷及答案: 这是一份2023年新高考天津数学高考真题试卷及答案,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年高考真题——数学(天津卷)无答案: 这是一份2023年高考真题——数学(天津卷)无答案,共5页。