河北省廊坊市文安县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析)
展开1. 冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为( )
A. B. C. D.
2. 若分式值为零, 则( ).
A. B. C. D.
3. 冠状病毒是一个大型病毒家族,借助电子显微镜,我们可以看到这些病毒直径约为125纳米(1纳米米),125纳米用科学记数法表示等于( )
A. 米B. 米C. 米D. 米
4. 下列不能用平方差公式直接计算的是( )
A. B.
C D.
5. 如图,∠1=∠2,要说明△ABD≌△ACD,需从下列条件中选一个,错误的选法是( )
A. ∠ADB=∠ADCB. ∠B=∠CC. DB=DCD. AB=AC
6. 分式﹣可变形为( )
A. ﹣B. C. ﹣D.
7. 如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为( )
A. 75°B. 65°
C. 40°D. 30°
8. 下列说法中,正确的个数有( )
①若一个多边形的外角和等于360°,则这个多边形的边数为4;
②三角形的高相交于三角形的内部;
③三角形的一个外角大于任意一个内角;
④一个多边形的边数每增加一条,这个多边形的内角和就增加;
⑤对角线共有5条的多边形是五边形.
A. 1个B. 2个C. 3个D. 4个
9. 如图,在△ABD中,∠D=20°,CE垂直平分AD,交BD于点C,交AD于点E,连接AC,若AB=AC,则∠BAD的度数是( )
A. 100°B. 110°C. 120°D. 150°
10. 练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有
① ②
③ ④
A. 1个B. 2个C. 3个D. 4个
11. 为半径画弧,交O′A′于点C′;
(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;
(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.
小聪作法正确的理由是( )
A. 由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
B. 由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
C. 由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
D. 由“等边对等角”可得∠A′O′B′=∠AOB
12. 若是完全平方式,则m的值为( )
A. 3B. C. 7D. 或7
13. 如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是( ).
A. Rt△ACD和Rt△BCE全等B. OA=OB
C. E是AC的中点D. AE=BD
14. 如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )
A. 2560B. 490C. 70D. 49
15. 如图,已知在中,,点D,E分别在边,上,,,若,则的度数为( )
A. 30°B. 40°C. 50°D. 60°
16. 寒假到了,为了让同学们过一个充实而有意义假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x页,则根据题意可列出方程( )
A. B.
C. D.
二.填空题(本大题共3题,总计 12分)
17. 计算:(﹣2a2)3的结果是_____.
18. 如图,在锐角△ABC中,∠BAC 40°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM MN有最小值时,_____________°.
19. 如图,在正方形中,,延长到点,使,连接,动点从点出发,以每秒的速度沿向终点运动.设点的运动时间为秒,当和全等时,的值为 __.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)计算:;
(2)因式分解:.
21. (1)解方程:
(2)先化简,再求值,其中.
22. 在平面直角坐标系中,△ABC三个顶点的坐标为:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1与△ABC关于y轴对称,请写出点A1,B1,C1的坐标(直接写答案):A1 ;B1, ;C1 ;
(2)△ABC的面积为 ;
(3)在y轴上画出点P,使PB+PC最小.
23. 如图,已知△ABC.
(1)用直尺和圆规按下列要求作图:
①作△ABC的角平分线AD;
②作∠CBE=∠ADC,BE交CA的延长线于点E;
③作AF⊥BE,垂足为F.
(2)直接判断图中EF与BF的数量关系.
24. (1)若,求的值;
(2)请直接写出下列问题的答案:
①若,则___________;
②若,则__________.
25. 某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.
(1)求甲、乙两个工程队每天各筑路多少米?
(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?
26. 在练习课上,慧慧同学遇到了这样一道数学题:如图,把两个全等的直角三角板的斜边重合,组成一个四边形ACBD,∠ACD=30°,以D为顶点作∠MDN,交边AC,BC于点M,N,∠MDN=60°,连接MN.
探究AM,MN,BN三条线段之间的数量关系.
慧慧分析:可先利用旋转,把其中的两条线段“接起来”,再通过证明两三角形全等,从而探究出AM,MN,BN三条线段之间的数量关系.
慧慧编题:编题演练环节,慧慧编题如下:
请你解答:请对慧慧同学所编制的问题进行解答.
文安县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:D
解析:解:A、不是轴对称图形,此项不符题意;
B、不是轴对称图形,此项不符题意;
C、不是轴对称图形,此项不符题意;
D、是轴对称图形,此项符合题意;
故选:D.
2.【答案】:B
解析:∵分式值为0,
∴,
∴x=1.
故选:B.
3.【答案】:A
解析:解:125纳米=125×10-9米=米,
故选:A.
4.【答案】:A
解析:A. ,不符合平方差公式,符合题意,
B. ,符合平方差公式,不符合题意,
C. ,符合平方差公式,不符合题意,
D. ,符合平方差公式,不符合题意,
故选:A.
5.【答案】:C
解析:解:由题意可知∠1=∠2,AD=AD,
对于条件∠ADB=∠ADC,可以利用ASA证明△ABD≌△ACD,故选项A不符合题意;
对于条件∠B=∠C,可以利用AAS证明△ABD≌△ACD,故选项B不符合题意;
对于条件DB=DC,不可以利用SSA证明△ABD≌△ACD,故选项C符合题意;
对于条件AB=AC,可以利用SAS证明△ABD≌△ACD,故选项D不符合题意;
故选C.
6.【答案】:B
解析: 可变式为
∴B正确
故选B
7.【答案】:B
解析:解:∵△ABC≌△DCB,
∴∠D=∠A=75°,∠ACB=∠DBC=40°,
∴∠DCB=180°-75°-40°=65°,
故选:B.
8.【答案】:B
解析:解:①任意多边形的外角和等于360°,说法错误,不符合题意;
②只有锐角三角形的高相交于三角形的内部,说法错误,不符合题意;
③根据三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和,得三角形的一个外角大于任意一个于它不相邻的内角,说法错误,不符合题意;
④根据多边形内角和公式:,得一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确,符合题意;
⑤n边形的对角线条数为:,当n=5时,,说法正确,符合题意;
综上,正确个数有2个,
故选B.
9.【答案】:C
解析:解:∵CE垂直平分AD,
∴,
∴,
∴,
∵AB=AC,
∴,
∴,
∴,
故选:C.
10.【答案】:B
解析::①x3+x=x(x2+1),不符合题意;
②x2-2xy+y2=(x-y)2,符合题意;
③a2-a+1不能分解,不符合题意;
④x2-16y2=(x+4y)(x-4y),符合题意,
故选B
11.【答案】:A
解析:解:由作图得OD=OC=OD′=OC′,CD=C′D′,
则根据“SSS”可判断△C′O′D′≌△COD.
故选:A.
12.【答案】:D
解析:∵关于x的二次三项式是一个完全平方式,
∴m-2=±1×5,
∴m=7或-3,故D正确.
故选:D.
13.【答案】:C
解析:解:A.∵∠C=∠C=90°,
∴△ACD和△BCE是直角三角形,
在Rt△ACD和Rt△BCE中,
∵AD=BE,DC=CE,
∴Rt△ACD≌Rt△BCE(HL),正确;
B.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,
在△AOE和△BOD中,
∵
∴△AOE≌△BOD(AAS),
∴AO=OB,正确,不符合题意;
C.AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;
D.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,正确,不符合题意.
故选C.
14.【答案】:B
解析:解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,
∴ab=10,a+b=7,
∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.
故选:B.
15.【答案】:C
解析:如图,过点D作于点F.
∴在和中,
∴,
∴,
∴AD为的角平分线,
∴,
∴.
故选C.
16.【答案】:D
解析:解:设小芳每天看书x页,则小荣每天看页,
由题意得: ,
故选:D.
二. 填空题
17.【答案】: ﹣8a6
解析:解:(﹣2a2)3
=(-2)3•(a2)3
=﹣8a6,
故答案为:﹣8a6.
18.【答案】: 50
解析:如图,在AC上截取AE=AN,连接BE,
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
∵AM=AM,
∴△AME≌△AMN,
∴ME=MN,
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
当BE是点B到直线AC的距离时,BE⊥AC,
∴∠ABM=90°-∠BAC=90°-40°=50°;
故答案为:50.
19.【答案】: 2或7
解析:∵正方形ABCD,
∴
是直角三角形,
为直角三角形,
点只能在上或者上,
当点在上时,如图,当时,有,
,
,
,
当点在上时,则当时,有,
,
故答案为:2或7.
三.解答题
20【答案】:
(1);(2)
解析:
解:(1)原式
;
(2)原式
.
21【答案】:
(1);
(2);
解析:
(1)解:方程两边同时乘以,得
解得,
检验:当时,,
所以原分式方程的解为
(2)解:原式
,
当时,原式.
22【答案】:
(1)(3,2)、(4,﹣3)、(1,﹣1);(2)6.5;(3)见解析.
解析:
(1)根据点关于y轴对称的性质得:;
(2)如图可知,
则;
(3)由题意可得y轴是线段的垂直平分线,则
因此
由三角形的三边关系得
故当三点共线时,最小,且最小值为
连接,与y轴的交点即为所求点P(如图所示).
23【答案】:
(1)①作图见解析;②作图见解析;③作图见解析
(2)
解析:
【小问1解析】
①解:如图1,射线AD就是∠BAC的角平分线;
②解:作∠EBC=∠ADC,点E就是所求作的点,如图1所示;
③解:作线段的垂直平分线,如图1所示;
【小问2解析】
解:.
由(1)可知
∵∠CBE=∠ADC
∴
∴,
∴
∴
∴是等腰三角形
∵
∴.
24【答案】:
(1)12;(2)①;②17
解析:
(1)∵,
∴,
∴;
(2)①∵,
∴=,
∴;
故答案为:;
②设a=4-x,b=5-x,
∵a-b=4-x-(5-x)=-1,
∴,
∴,
∵ab=,
∴,
∴,
故答案为:17.
25【答案】:
(1)甲每天筑路80米,乙每天筑路40米;
(2)甲至少要筑路50天
解析:
解:(1)设乙队每天筑路x米,则甲每天筑路2x米.
依题意,得:,
解得:x=40,
经检验:x=40是原分式方程的解,
则2x=80,
答:甲每天筑路80米,乙每天筑路40米;
(2)设甲筑路t天,则乙筑路天数为天,
依题意:,
解得:,
∴甲至少要筑路50天.
26【答案】:
【探究】AM+BN=MN,证明见解析;(1)AM+BN=MN,证明见解析;(2)BN−AM=MN,证明见解析
解析:
【分析】探究:延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;
(1)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;
(2)在CB截取BE=AM,连接DE,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可.
【解析】探究:AM+BN=MN,
证明:延长CB到E,使BE=AM,
∵∠A=∠CBD=90°,
∴∠A=∠EBD=90°,
在△DAM和△DBE中
∴△DAM≌△DBE,
∴∠BDE=∠MDA,DM=DE.
∵∠MDN=∠ADC=60°,
∴∠ADM=∠NDC,
∴∠BDE=∠NDC,
∴∠MDN=∠NDE.
在△MDN和△EDN中,
∴△MDN≌△EDN,
∴MN=NE.
∵NE=BE+BN=AM+BN,
∴AM+BN=MN.
解:(1)AM+BN=MN.
证明:延长CB到E,使BE=AM,连接DE,
∠ACD=45°,,。
∠MDN+∠ACD=90°,
∵∠A=∠CBD=90°,
∴∠A=∠DBE=90°.
∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,
∴∠MDN=∠CDA.
∵∠MDN=∠BDC,
∴∠MDA=∠CDN,∠CDM=∠NDB.
在△DAM和△DBE中,
∴△DAM≌△DBE,
∴∠BDE=∠MDA=∠CDN,DM=DE.
∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°,
∴∠NDM=∠ADC=∠CDB,
∴∠ADM=∠CDN=∠BDE.
∵∠CDM=∠NDB
∴∠MDN=∠NDE.
在△MDN和△EDN中,
∴△MDN≌△EDN,
∴MN=NE
∵NE=BE+BN=AM+BN,
∴AM+BN=MN.
解:(2)BN−AM=MN,
证明:在CB截取BE=AM,连接DE,
∠ACD=45°,,
∠MDN+∠ACD=90°.
∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,
∴∠MDN=∠CDA.
∵∠ADN=∠ADN,
∴∠MDA=∠CDN.
∵∠B=∠CAD=90°,
∴∠B=∠DAM=90°.
在△DAM和△DBE中
∴△DAM≌△DBE,
∴∠BDE=∠ADM=∠CDN,DM=DE.
∵∠ADC=∠BDC=∠MDN,
∴∠MDN=∠EDN.
在△MDN和△EDN中,
∴△MDN≌△EDN,
∴MN=NE.
∵NE=BN−BE=BN−AM,
∴BN−AM=MN.
如图(1),把两个全等的直角三角板的斜边重合,组成一个四边形ACBD,∠ACD=45°,以D为顶点作∠MDN,交边AC,BC于点M,N,,连接MN.
(1)先猜想AM,MN,BN三条线段之间的数量关系,再证明.
(2)∠MDN绕点D旋转,当M,N分别在CA,BC的延长线上,完成图(2),其余条件不变,直接写出AM,MN,BN三条线段之间的数量关系.
河北省廊坊市永清县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省廊坊市永清县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共13页。试卷主要包含了选择题等内容,欢迎下载使用。
河北省廊坊市香河县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省廊坊市香河县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
河北省廊坊市文安县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省廊坊市文安县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共15页。试卷主要包含了选择题等内容,欢迎下载使用。