重庆市江北九校2023-2024学年八上数学期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如果,那么的值为( ).
A.9B.C.D.5
2.等腰三角形的一个内角是,它的底角的大小为( )
A.B.C.或D.或
3.如图,在中,边的中垂线与的外角平分线交于点,过点作于点,于点.若,.则的长度是( )
A.1B.2C.3D.4
4.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有( )
A.2对B.3对C.4对D.5对
5.如图,在等边△ABC中,AB=15,BD=6,BE=3,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是( )
A.8B.10C.D.12
6.如果是一个完全平方式,那么k的值是( )
A.3B.±6C.6D.±3
7.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:
关于这组数据,下列说法正确的是( )
A.众数是2册B.中位数是册C.极差是2册D.平均数是册
8.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是( )
A.m<﹣1 B.m>﹣1 C.m>0 D.m<0
9.已知点P(4,a+1)与点Q(-5,7-a)的连线平行于x轴,则a的值是( )
A.2B.3C.4D.5
10.三角形边长分别为下列各数,其中能围成直角三角形的是 ( )
A.2,3,4B.3,4,5C.4,5,6D.5,6,7
11.将数据0.0000025用科学记数法表示为( )
A.B.C.D.
12.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为( )
A.(﹣1,2)B.(1,2)C.(1,﹣2)D.(﹣1,﹣2)
二、填空题(每题4分,共24分)
13.已知函数y=-x+m与y=mx-4的图象交点在y轴的负半轴上,那么,m的值为____.
14.若分式的值为0,则x=____.
15.已知点(-2,y),(3,y)都在直线y=kx-1上,且k小于0,则y1与y2的大小关系是__________.
16.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为纳米的碳纳米管,已知纳米米,则纳米用科学记数法表示为_____________米.
17.如图所示,是由截面相同的长方形墙砖粘贴的部分墙面,根据图中信息可得每块墙砖的截面面积是__________.
18.如图,中,,,把沿翻折,使点落在边上的点处,且,那么的度数为________.
三、解答题(共78分)
19.(8分)数学课上,张老师出示了如下框中的题目.
已知,在中,,,点为的中点,点和点分别是边和上的点,且始终满足,试确定与的大小关系.
小明与同桌小聪讨论后,进行了如下解答:
(1)(特殊情况,探索结论)如图1,若点与点重合时,点与点重合,容易得到与的大小关系.请你直接写出结论:____________(填“”,“”或“”).
(2)(特例启发,解答题目)如图2,若点不与点重合时,与的大小关系是:_________(填“”,“”或“”).理由如下:连结,(请你完成剩下的解答过程)
(3)(拓展结论,设计新题)在中,,点为的中点,点和点分别是直线和直线上的点,且始终满足,若,,求的长.(请你直接写出结果)
20.(8分)用消元法解方程组时,两位同学的解法如下:
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.
(2)请选择一种你喜欢的方法,完成解答.
21.(8分)电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户,张女士在某网店花220元买了1只茶壶和10只茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.
(1)求茶壶和茶杯的单价分别是多少元?
(2)新春将至,该网店决定推出优惠酬宾活动:买一只茶壶送一只茶杯,茶杯单价打八折.请你计算此时买1只茶壶和10只茶杯共需多少元?
22.(10分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.
(1)该商店第一次购进水果多少千克;
(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?
注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.
23.(10分)(1)育德中学800名学生参加第二十届运动会开幕式大型表演,道具选用红黄两色锦绣手幅.已知红色手幅每个4元;黄色手幅每个2.5元;购买800个道具共花费2420元,那么两种手幅各多少个?
(2)学校计划制作1000个吉祥物作为运动会纪念.现有甲、乙两个工厂可以生产这种吉祥物.
甲工厂报价:不超过400个时每个吉祥物20元,400个以上超过部分打七折;但因生产条件限制,截止到学校交货日期只能完成800个;乙工厂报价每个吉祥物18元,但需运费400元.问:学校怎样安排生产可以使总花费最少,最少多少钱?
24.(10分)如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA表示货车离开甲地的距离y(km)与时间x(h)之间的函数关系;折线BCD表示轿车离开甲地的距离y(km)与时间x(h)之间的函数关系.请根据图象解答下列问题:
(1)甲、乙两地相距 km,轿车比货车晚出发 h;
(2)求线段CD所在直线的函数表达式;
(3)货车出发多长时间两车相遇?此时两车距离甲地多远?
25.(12分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.
26.(12分)解方程:+=4
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、A
4、D
5、D
6、B
7、D
8、A
9、B
10、B
11、D
12、D
二、填空题(每题4分,共24分)
13、-1
14、1
15、
16、5×1−1
17、
18、
三、解答题(共78分)
19、(1)=;(2)=,理由见解析;(1)1或1
20、(1)解法一中的计算有误;(2)原方程组的解是.
21、(1)茶壶的单价为70元,茶杯的单价为15元.(2)178
22、(1)该商店第一次购进水果1千克;(2)每千克水果的标价至少是15元.
23、(1)红色手幅280个,黄色手幅520个;(2)学校安排在甲厂生产800件,乙厂生产200件,可以使总费用最少,最少17600元.
24、(1)300;1.2 (2)y=110x﹣195 (3)3.9;234千米
25、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析
26、
册数
0
1
2
3
人数
13
35
29
23
平均成绩/环
中位数/环
众数/环
方差
甲
a
7
7
1.2
乙
7
b
8
c
2023-2024学年江苏省南京江北新区七校联考数学九年级第一学期期末监测模拟试题含答案: 这是一份2023-2024学年江苏省南京江北新区七校联考数学九年级第一学期期末监测模拟试题含答案,共7页。试卷主要包含了如图,在平行四边形中,若反比例函数y= 的图象经过点等内容,欢迎下载使用。
2023-2024学年江北新区联盟九上数学期末经典模拟试题含答案: 这是一份2023-2024学年江北新区联盟九上数学期末经典模拟试题含答案,共9页。试卷主要包含了在下列函数图象上任取不同两点P,将两个圆形纸片等内容,欢迎下载使用。
浙江省宁波江北区四校联考2023-2024学年九上数学期末学业质量监测试题含答案: 这是一份浙江省宁波江北区四校联考2023-2024学年九上数学期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。