浙江省宁波江北区四校联考2023-2024学年九上数学期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图是一根电线杆在一天中不同时刻的影长图,试按其天中发生的先后顺序排列,正确的是( )
A.①②③④B.④①③②C.④②③①D.④③②①
2.下列各式由左到右的变形中,属于分解因式的是( )
A.B.
C.D.
3.下列交通标志中,是中心对称图形的是( )
A.B.C.D.
4.如图,正方形的边长是3,,连接、交于点,并分别与边、交于点、,连接,下列结论:①;②;③;④当时,.正确结论的个数为( )
A.1个B.2个C.3个D.4个
5.一个袋内装有标号分别为1、2、3、4的四个球,这些球除颜色外都相同.从袋内随机摸出一个球,让其标号为一个两位数的十位数字,放回摇匀后,再从中随机摸出一个球,让其标号为这个两位数的个位数字,则这个两位数是偶数的概率为( )
A.B.C.D.
6.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是( )
A.△ABC是等腰三角形B.△ABC是等腰直角三角形
C.△ABC是直角三角形D.△ABC是一般锐角三角形
7.如图,在矩形ABCD中,DE⊥AC垂足为F,交BC于点E,BE=2EC,连接AE.则tan∠CAE的值为( )
A.B.C.D.
8.如果反比例函数y=的图象经过点(﹣5,3),则k=( )
A.15B.﹣15C.16D.﹣16
9.如图所示,半径为3的⊙A经过原点O和C(0,2),B是y轴左侧⊙A优弧上的一点,则( )
A.2B.C.D.
10.关于x的一元二次方程有实数根,则a的取值范围是
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,将一张画有内切圆⊙P的直角三角形纸片AOB置于平面直角坐标系中,已知点A(0,3),B(4,0),⊙P与三角形各边相切的切点分别为D、E、F. 将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图①位置,第二次旋转至图②位置,…,则直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标为____.
12.计算:______.
13.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=____.
14.如图,已知圆锥的底面半径为3,高为4,则该圆锥的侧面积为______.
15.在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一一球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为_____.
16.已知扇形的半径为,圆心角为,则扇形的弧长为__________.
17.如图,在△ABC中,AD是BC上的高,tanB=cs∠DAC,若sinC=,BC=12,则AD的长_____.
18.已知中,,交于,且,,,,则的长度为________.
三、解答题(共66分)
19.(10分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.
20.(6分)某商店以每件40元的价格进了一批商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.
(1)求该商品平均每月的价格增长率;
(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时销售此商品每月的利润可达到4000元.
21.(6分)某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).
(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);
(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?
22.(8分)阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为的形式:求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为二元一次方程组来解;求解一元二次方程,把它转化为两个一元一次方程来解:求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想一一转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程,可以通过因式分解把它转化为,解方程和,可得方程的解.利用上述材料给你的启示,解下列方程;
(1);
(2).
23.(8分)如图,是的直径,,为弧的中点,正方形绕点旋转与的两边分别交于、(点、与点、、均不重合),与分别交于、两点.
(1)求证:为等腰直角三角形;
(2)求证:;
(3)连接,试探究:在正方形绕点旋转的过程中,的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.
24.(8分)阅读材料,回答问题:
材料
题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率
题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?
我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.
问题:
(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?
(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案
(3)请直接写出题2的结果.
25.(10分)如图,在矩形中对角线、相交于点,延长到点,使得四边形是一个平行四边形,平行四边形对角线交、分别为点和点.
(1)证明:;
(2)若,,则线段的长度.
26.(10分)计算:﹣12119+|﹣2|+2cs31°+(2﹣tan61°)1.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、D
4、D
5、A
6、B
7、C
8、D
9、C
10、A
二、填空题(每小题3分,共24分)
11、 (8075,1)
12、
13、1.
14、
15、1.
16、
17、1
18、
三、解答题(共66分)
19、(1)y=x2;(2)证明见解析;(3)(,3)或(﹣,3).
20、(1)20%;(2)60元
21、(1)鸡场的宽(BC)为6m,则长(AB)为1m;(2)不能.
22、(1);(2)x=1
23、(1)见解析;(2)见解析;(3)存在,
24、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).
25、(1)证明见解析;(2).
26、2
浙江省宁波海曙区七校联考2023-2024学年数学九上期末监测模拟试题含答案: 这是一份浙江省宁波海曙区七校联考2023-2024学年数学九上期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年浙江省宁波七中学教育集团九上数学期末学业质量监测模拟试题含答案: 这是一份2023-2024学年浙江省宁波七中学教育集团九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列函数中,是的反比例函数的是,已知,则下列各式不成立的是,下列说法正确的个数是等内容,欢迎下载使用。
浙江省宁波市董玉娣中学2023-2024学年九上数学期末学业质量监测试题含答案: 这是一份浙江省宁波市董玉娣中学2023-2024学年九上数学期末学业质量监测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,对于二次函数,下列说法正确的是等内容,欢迎下载使用。