吉林省长春市二道区2023-2024学年数学八年级第一学期期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,如在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于( )
A.8B.4C.2D.1
2.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的( )
A.B.
C.D.
3.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为( )
A.2B.1C.0D.-1
4.小王每天记忆10个英语单词,x天后他记忆的单词总量为y个,则y与x之间的函数关系式是( )
A.y=10+xB.y=10xC.y=100xD.y=10x+10
5.已知以下三个数, 不能组成直角三角形的是 ( )
A.9、12、15B.、3、2C.0.3、0.4、0.5;D.
6.由下列条件不能判断△ABC是直角三角形的是( )
A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5
C.∠A+∠B=∠CD.AB2=BC2+AC2
7.若等腰中有一个内角为,则这个等腰三角形的一个底角的度数为( )
A.B.C.或D.或
8.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( )
A.选①②B.选②③C.选①③D.选②④
9.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是( )
A.点MB.点NC.点PD.点Q
10.下列关于的方程中一定有实数解的是( )
A.B.C.D.
11.如图,在△ABC中,AB=AC,BE, CF是中线,判定△AFC≌△AEB的方法是( )
A.SSSB.SASC.AASD.HL
12.下列语句不属于命题的是( )
A.直角都等于90°B.两点之间线段最短
C.作线段ABD.若a=b,则a2=b2
二、填空题(每题4分,共24分)
13.我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯,为提高水资源的利用率,某住宅小区安装了循环用水装置. 经测算,原来天用水吨,现在这些水可多用4天,现在每天比原来少用水________吨.
14.如图,点P是AOB内任意一点,OP=10cm,点P与点关于射线OA对称,点P与点关于射线OB对称,连接交OA于点C,交OB于点D,当△PCD的周长是10cm时,∠AOB的度数是______度。
15.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=__________.
16.已知,正比例函数经过点(-1,2),该函数解析式为________________.
17.若将三个数、、表示在数轴上,则其中被墨迹覆盖的数是_______.
18.若不等式组的解集是,则的取值范围是________.
三、解答题(共78分)
19.(8分)某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用5天;
(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.
据上述条件解决下列问题:
①规定期限是多少天?写出解答过程;
②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?
20.(8分)解不等式:
(1)不等式
(2)解不等式组:并将,把解集表示在数轴上
21.(8分)综合与实践:
问题情境:
如图 1,AB∥CD,∠PAB=25°,∠PCD=37°,求∠APC的度数,小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC
问题解决:
(1)按小明的思路,易求得∠APC 的度数为 °;
问题迁移:
如图 2,AB∥CD,点 P 在射线 OM 上运动,记∠PAB=α,∠PCD=β.
(2)当点 P 在 B,D 两点之间运动时,问∠APC 与α,β 之间有何数量关系? 请说明理由;
拓展延伸:
(3)在(2)的条件下,如果点 P 在 B,D 两点外侧运动时 (点 P 与点 O,B,D 三点不重合)请你直接写出当点 P 在线段 OB 上时,∠APC 与 α,β 之间的数量关系 ,点 P 在射线 DM 上时,∠APC 与 α,β 之间的数量关系 .
22.(10分)如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC
(1)如图1,求C点坐标;
(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角,连接CQ,当点P在线段OA上,求证:PA=CQ;
(3)在(2)的条件下若C、P,Q三点共线,直接写出此时∠APB的度数及P点坐标
23.(10分)如图,网格中小正方形的边长为1,已知点A,B,C.
(1)作出△ABC;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)直线AB和直线A1B1交点的坐标是 .
24.(10分)以水润城,打造四河一库生态水系工程,是巩义坚持不懈推进文明创建与百城提质深度融合的缩影,伊洛河畔正是此项目中的一段.如今,伊洛河畔需要铺设一条长为米的管道,决定由甲、乙两个工程队来完成.已知甲工程队比乙工程队每天能多铺设米,且甲工程队铺设米所用的天数与乙工程队铺设米所用的天数相同.(完成任务的工期为整数)
(1)甲、乙工程队每天各能铺设多少米?
(2)如果要求完成该项管道铺设任务的工期不超过天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来(工程队分配工程量为整百数)
25.(12分)阅读下面的解题过程,求的最小值.
解:∵=,
而,即最小值是0;
∴的最小值是5
依照上面解答过程,
(1)求的最小值;
(2)求的最大值.
26.(12分)计算:14+(3.14) 0+÷
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、D
4、B
5、D
6、A
7、D
8、B
9、A
10、A
11、B
12、C
二、填空题(每题4分,共24分)
13、
14、30°
15、a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5
16、y=-2x
17、
18、
三、解答题(共78分)
19、规定期限1天;方案(3)最节省
20、(1);(2),作图见解析
21、(1)62;(2),理由详见解析;(3);.
22、(1)(1,-4);(2)证明见解析;(3)
23、(1)见解析;(2)见解析;(3)
24、(1)甲、乙工程队每天分别能铺设米和米;(2)分配方案有种:方案一:分配给甲工程队米,分配给乙工程队米;方案二:分配给甲工程队米,分配给乙工程队米;方案三:分配给甲工程队米,分配给乙工程队米.
25、(1)2019;(2)1.
26、0
吉林省长春市二道区2023-2024学年九年级数学第一学期期末复习检测试题含答案: 这是一份吉林省长春市二道区2023-2024学年九年级数学第一学期期末复习检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数,下列结论正确的是,﹣3﹣等内容,欢迎下载使用。
吉林省长春市九台2023-2024学年数学九年级第一学期期末达标检测试题含答案: 这是一份吉林省长春市九台2023-2024学年数学九年级第一学期期末达标检测试题含答案,共7页。
吉林省长春市二道区2023-2024学年上学期八年级期末数学试题: 这是一份吉林省长春市二道区2023-2024学年上学期八年级期末数学试题,共1页。