2023-2024学年江西省萍乡市芦溪县数学八上期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如图,在矩形中,,动点满足,则点到两点距离之和的最小值为( )
A.B.C.D.
2.活动课上, 小华将两张直角三角形纸片如图放置, 已知AC=8,O是AC的中点, △ABO与△CDO的面积之比为4:3, 则两纸片重叠部分即△OBC的面积为()
A.4B.6C.2D.2
3.估计的运算结果应在哪个两个连续自然数之间( )
A.﹣2和﹣1B.﹣3和﹣2C.﹣4和﹣3D.﹣5和﹣4
4.如图所示,在第1个中,;在边上任取一点,延长到,使,得到第2个;在边上任取一点,延长到,使,得到第3个…按此做法继续下去,则第个三角形中以为顶点的底角度数是( )
A.B.C.D.
5.下列计算正确的是( )
A.3x﹣2x=1B.a﹣(b﹣c+d)=a+b+c﹣d
C.(﹣a2)2=﹣a4D.﹣x•x2•x4=﹣x7
6.如图,在中, ,,是的中垂线,是的中垂线,已知的长为,则阴影部分的面积为( )
A.B.C.D.
7.若,则实数在数轴上对应的点的大致位置是( )
A.B.
C.D.
8.如图,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是( )
A.DC=DEB.∠AED=90°C.∠ADE=∠ADCD.DB=DC
9.如图,已知,是边的中点,则等于( )
A.B.C.D.
10.如图,△ABC与△DEF关于y轴对称,已知A,B,E(2,1),则点D的坐标为( )
A.B.C.D.
11.如果不等式组恰有3个整数解,则的取值范围是( )
A.B.C.D.
12.如图,△ABC中,AB=AC,BC=5,,于D,EF垂直平分AB,交AC于F,在EF上确定一点P使最小,则这个最小值为( )
A.3B.4C.5D.6
二、填空题(每题4分,共24分)
13.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg
14.若干个形状、大小完全相同的长方形纸片围成正方形,如图①是用4个长方形纸片围成的正方形,其阴影部分的面积为16;如图②是用8个长方形纸片围成的正方形,其阴影部分的面积为8;如图③是用12个长方形纸片围成的正方形,则其阴影部分图形的周长为__________.
15.若点A(a,﹣2)与点B(﹣3,b)关于x轴对称,则ab=_____.
16.方程的解是________.
17.把点先向右平移2个单位,再向上平移3个单位,所得点的坐标为_____.
18.如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .
三、解答题(共78分)
19.(8分)某服装店用4500元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价一进价),这两种服装的进价、标价如表所示
(1)请利用二元一次方程组求A,B两种新式服装各购进的件数;
(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?
20.(8分)先化简,再求值:[(4x-y)(2x-y)+ y (x-y)]÷2x ,其中x=2,y=
21.(8分)现有3张边长为的正方形纸片(类),5张边长为的矩形纸片(类),5张边长为的正方形纸片(类).
我们知道:多项式乘法的结果可以利用图形的面积表示.
例如:就能用图①或图②的面积表示.
(1)请你写出图③所表示的一个等式:_______________;
(2)如果要拼一个长为,宽为的长方形,则需要类纸片_____张,需要类纸片_____张,需要类纸片_____张;
(3)从这13张纸片中取出若干张,每类纸片至少取出一张,把取出的这些纸片拼成一个正方形(按原纸张进行无缝隙,无重叠拼接),则拼成的正方形的边长最长可以是_______(用含的式子表示).
22.(10分)如图,已知线段AB,根据以下作图过程:
(1)分别以点A、点B为圆心,大于AB长的为半径作弧,两弧相交于C、D两点;
(2)过C、D两点作直线CD.
求证:直线CD是线段AB的垂直平分线.
23.(10分)解决下列两个问题:
(1)如图1,在△ABC中,AB=3,AC=4,BC=1.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;
解:PA+PB的最小值为 .
(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)
24.(10分)小华同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.
(一)猜测探究
在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.
(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是_______,NB与MC的数量关系是_______;
(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由。
(二)拓展应用
如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=90°,∠C1=30°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旅转60°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.
25.(12分)△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC关于y 轴对称的△A1B1C1,并写出A1、B1、C1的坐标.
(2)将△ABC向右平移6个单位,画出平移后的△A2B2C2;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
26.(12分)计算:14+(3.14) 0+÷
参考答案
一、选择题(每题4分,共48分)
1、A
2、D
3、C
4、C
5、D
6、B
7、B
8、D
9、C
10、B
11、D
12、D
二、填空题(每题4分,共24分)
13、20
14、
15、1
16、.
17、
18、1
三、解答题(共78分)
19、(1)A种新式服装购进25件,B种新式服装购进30件;(2)1210元
20、4x-,
21、(1);(2)1,4,3;(3)
22、见解析
23、(1)3;(2)见解析
24、(一)(1)∠NAB=∠MAC,BN=MC;(2)成立,理由见解析;(二)线段B1Q长度的最小值为1.
25、(1)图详见解析,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)详见解析;(3)△A1B1C1和△A2B2C2关于直线x=3对称.
26、0
类型价格
A型
B型
进价(元/件)
60
100
标价(元/件)
100
160
江西省萍乡市芦溪县2024届九年级上学期期中质量监测数学试卷(图片版): 这是一份江西省萍乡市芦溪县2024届九年级上学期期中质量监测数学试卷(图片版),共6页。
江西省萍乡市芦溪县2023-2024学年八年级上学期期中质量监测数学试卷: 这是一份江西省萍乡市芦溪县2023-2024学年八年级上学期期中质量监测数学试卷,共4页。
2023-2024学年江西省萍乡市芦溪县九年级数学第一学期期末学业水平测试试题含答案: 这是一份2023-2024学年江西省萍乡市芦溪县九年级数学第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了对于问题,如果,那么锐角A的度数是等内容,欢迎下载使用。