2023-2024学年江苏省海门市东洲国际数学八上期末调研模拟试题含答案
展开
这是一份2023-2024学年江苏省海门市东洲国际数学八上期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知函数和,当时,的取值范围是,下列实数中,是无理数的是,已知有意义,则的取值范围是,已知等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为( )
A.80°B.70°C.60°D.45°
2.下列命题的逆命题不是真命题的是( )
A.两直线平行,内错角相等
B.直角三角形两直角边的平方之和等于斜边的平方
C.全等三角形的面积相等
D.线段垂直平分线上的点到这条线段两端点的距离相等
3.已知一种植物种子的质量约为0.0000026千克,将数0.0000026用科学记数法表示为( )
A.2.6×10﹣6 B.2.6×10﹣5 C.26×10﹣8 D.0.26x10﹣7
4.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点, 且△ABC的面积为4cm2,则△BEF的面积等于( )
A.2cm2B.1cm2C.1.5 cm2D.1.25 cm2
5.已知函数和,当时,的取值范围是( )
A.B.C.D.
6.下列实数中,是无理数的是( )
A.B.C.D.
7.如图,将一张长方形纸片对折,再对折,然后沿第三个图中的虚线剪下,将纸片展开,得到一个四边形,这个四边形的面积是( )
A.B.C.D.
8.人数相同的八年级一、二两班同学在同一次数学单元测试,班级平均分和方差如下:,,则成绩较为稳定的班级是( )
A.一班B.二班C.两班成绩一样稳定D.无法确定
9.已知有意义,则的取值范围是( )
A.B.C.D.且
10.已知:关于x的分式方程无解,则m的值为( )
A.-4或6B.-4或1C.6或1D.-4或6或1
11.下列图形中,为轴对称图形的是( )
A.B.C.D.
12.一次函数的图象上有两点,则与的大小关系是( )
A.B.C.D.无法确定
二、填空题(每题4分,共24分)
13.如图,在Rt△ABC中,∠C=90°.点O是AB的中点,边AC=6,将边长足够大的三角板的直角顶点放在点O处,将三角板绕点0旋转,始终保持三角板的直角边与AC相交,交点为点E,另条直角边与BC相交,交点为D,则等腰直角三角板的直角边被三角板覆盖部分的两条线段CD与CE的长度之和为_____.
14.当时,分式有意义.
15.金秋十月,丹桂飘香,重庆双福育才中学迎来了首届行知创新科技大赛,初二年级某班共有18人报名参加航海组,航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于3人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6114元,则其中购买无人机模型的费用是__________.
16.已知实数、在数轴上的位置如图所示,化简=_____________
17.已知,则的值为________.
18.若边形的每个外角均为,则 的值是________.
三、解答题(共78分)
19.(8分)如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BE=CD.
20.(8分)根据要求画图:
(1)如图(1),是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.
(2)如图(2),在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.作△ABC关于点O的中心对称图形△A1B1C1.
21.(8分)因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客7000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?
22.(10分)如图,在等腰中,为延长线上一点,点在上,且
(1)求证:;
(2)若,求的度数.
23.(10分)共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?
24.(10分)如图,AD是△ABC的外角平分线,∠B=35°,∠DAE=60°,求∠C的度数.
25.(12分)如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.
(1)求证:∠A+∠C=∠B+D;
(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.
①以线段AC为边的“8字型”有 个,以点O为交点的“8字型”有 个;
②若∠B=100°,∠C=120°,求∠P的度数;
③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.
26.(12分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:
(1)长为的线段PQ,其中P、Q都在格点上;
(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、A
4、B
5、B
6、B
7、B
8、B
9、D
10、D
11、D
12、A
二、填空题(每题4分,共24分)
13、1.
14、
15、3300元
16、
17、1
18、
三、解答题(共78分)
19、详见解析
20、(1)见解析;(2)见解析
21、限行期间这路公交车每天运行100车次.
22、(1)见解析;(2)30°
23、两种机器人需要10小时搬运完成
24、85°
25、 (1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.
26、 (1)见解析;(2)见解析.
相关试卷
这是一份2023-2024学年江苏省海门市东洲国际数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了根据下面表格中的对应值等内容,欢迎下载使用。
这是一份2023-2024学年江苏省海门市东洲国际九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了如图,四边形的顶点坐标分别为等内容,欢迎下载使用。
这是一份江苏省海门市东洲国际2023-2024学年八年级数学第一学期期末监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,若分式方程无解,则的值为,下列算式中,正确的是等内容,欢迎下载使用。