2023-2024学年四川省成都市棕北中学八上数学期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.对不等式进行变形,结果正确的是( )
A.B.C.D.
2.变形正确的是( )
A.B.C.D.
3.已知三角形两边的长分别是5和11,则此三角形第三边的长可能是( )
A.5B.15C.3D.16
4.下列图案中不是轴对称图形的是( )
A.B.C.D.
5.下列运算正确的是( )
A.B.C.D.
6.下列运算正确的是( )
A.a2⋅a3=a6B.(a2)3=a6C.(﹣ab2)6=a6b6D.(a+b)2=a2+b2
7.已知A,B两地相距120千米,甲、乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车,图中DE,OC分别表示甲、乙离开A地的路程s(单位:千米)与时间t(单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y(单位:千米),则y关于t的函数图象是( )
A.B.C.D.
8.实数a,b在数轴上的位置如图所示,下列结论错误的是( )
A.|a|<1<|b|B.1<–a
A.B.C.D.
10.若x>y,则下列式子错误的是( )
A.x﹣2>y﹣2B.C.﹣x<﹣yD.1﹣x>1﹣y
11.在下列四个标志图案中,轴对称图形是( )
A. B.C.D.
12.已知如图,为四边形内一点,若且,,则的度数是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.将一张长方形纸片按如图5所示的方式折叠,BC、BD为折痕,则∠CBD为___度.
14.若,则=_____.
15.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)和(3,0),点C是y轴上的一个动点,连接AC、BC,则△ABC周长的最小值是_____.
16.如图,△ABC的两条高BD、CE相交于点O 且OB=OC.则下列结论:
①△BEC≌△CDB;
②△ABC是等腰三角形;
③AE=AD;
④点O在∠BAC的平分线上,
其中正确的有_____.(填序号)
17.点M(-5,−2)关于x轴对称的点是点N,则点N的坐标是________.
18.如图,数轴上点A、B对应的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径作圆弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,当点M在点B的右侧时,点M对应的数是_____.
三、解答题(共78分)
19.(8分)化简:2x2+(﹣2x+3y)(﹣2x﹣3y)﹣(x﹣3y)2,其中x=﹣2,y=﹣1.
20.(8分)我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在中,是边上的中线,与的“广益值”就等于的值,可记为
(1)在中,若,,求的值.
(2)如图2,在中,,,求,的值.
(3)如图3,在中,是边上的中线,,,,求和的长.
21.(8分)某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为腰作等腰直角三角形DAF,使∠DAF=90°,连接CF.
(1)观察猜想
如图1,当点D在线段BC上时,
①CF与BC的位置关系为 ;
②CF,DC,BC之间的数量关系为 (直接写出结论);
(2)数学思考
如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=2,请求出线段CE的长.
22.(10分)四边形是由等边和顶角为120°的等腰三角形拼成,将一个60°角顶点放在点处,60°角两边分别交直线于,交直线于两点.
(1)当都在线段上时,探究之间的数量关系,并证明你的结论;
(2)当在边的延长线上时,求证:.
23.(10分)问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
类比探究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
(2)△DEF是否为正三角形?请说明理由.
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
24.(10分)如图,为的角平分线,于点,于点,连接交于点,.
探究:判断的形状,并说明理由;
发现:与之间有怎样的数量关系,请直接写出你的结论,不必说明理由.
25.(12分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).
(1)求y与x之间的函数表达式;
(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.
26.(12分)有两棵树,一棵高9米,另一棵高4米,两树相距12米. 一只小鸟从一棵树的树梢(最高点)飞到另一棵树的树梢(最高点),问小鸟至少飞行多少米?
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、B
4、D
5、B
6、B
7、B
8、A
9、D
10、D
11、B
12、D
二、填空题(每题4分,共24分)
13、90
14、
15、
16、①②③④
17、(-5,2)
18、
三、解答题(共78分)
19、5x3+6xy﹣18y3,3
20、 (1)AC=9;(2)ABAC=-72,BABC=216;(3)BC=2OC=2,AB=10.
21、(1)①垂直;②BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,结论:CD=CF+BC.理由见解析;(3)CE=3.
22、(1)BM+AN=MN,证明见解析;(2)见解析;
23、 (1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1
24、探究:△AEF是等边三角形,理由见解析;发现:DO=AD
25、(1);(2)工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润.
26、小鸟至少飞行13米.
2023-2024学年四川省成都市棕北中学数学九上期末学业质量监测试题含答案: 这是一份2023-2024学年四川省成都市棕北中学数学九上期末学业质量监测试题含答案,共8页。试卷主要包含了下列命题中正确的是等内容,欢迎下载使用。
+四川省成都市武侯区棕北中学2023-2024学年九年级上学期开学数学试卷: 这是一份+四川省成都市武侯区棕北中学2023-2024学年九年级上学期开学数学试卷,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年四川省成都市武侯区棕北中学九年级(上)开学数学试卷(含解析): 这是一份2023-2024学年四川省成都市武侯区棕北中学九年级(上)开学数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。