2023-2024学年广东省江门蓬江区五校联考数学八年级第一学期期末质量跟踪监视模拟试题含答案
展开
这是一份2023-2024学年广东省江门蓬江区五校联考数学八年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了若四边形ABCD中,∠A,如图,已知直线AB等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.下列图形中,轴对称图形的个数是( )
A.1B.2C.3D.4
2.如图所示,在折纸活动中,小明制作了一张纸片,点、分别是边、上,将沿着折叠压平,与重合,若,则( ).
A.140B.130C.110D.70
3.如图,已知,点...在射线上,点...在射线上;...均为等边三角形,若,则的边长为()
A.B.C.D.
4.如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,当蚂蚁运动的时间为时,蚂蚁与点的距离为则关于的函数图像大致是( )
A.B.
C.D.
5.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是( )
A.-=20B.-=20C.-=D.=
6.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是( )
A.AB=CDB.AC=BDC.AO=BOD.∠A=∠B
7.如图,在△ABC中,边AC的垂直平分线交边AB于点D,连结CD.若∠A=50°,则∠BDC的大小为( )
A.90°B.100°C.120°D.130°
8.若四边形ABCD中,∠A:∠B:∠C:∠D=1:4:2:5,则∠C+∠D等于( )
A.90°B.180°C.210°D.270°
9.如图,已知直线AB:y=x+分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE,当BD+BE的值最小时,则H点的坐标为( )
A.(0,4)B.(0,5)C.(0,)D.(0,)
10.已知,点在内部,点与点关于对称,点与点关于对称,则是( )
A.含30°角的直角三角形B.顶角是30°的等腰三角形
C.等边三角形D.等腰直角三角形
二、填空题(每小题3分,共24分)
11.如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC;其中正确的结论为_____.(填写序号)
12.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是______.
13.中,厘米,厘米,点为的中点,如果点在线段上以2厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动,若点的运动速度为厘米/秒,则当与全等时,的值为______厘米/秒.
14.若a+b=4,ab=1,则a2b+ab2=________.
15.在△ABC中,AB=AC,∠B=60°,则△ABC是_______三角形.
16.已知,那么______.
17.化简:的结果为_______.
18.若二次根式在实数范围内有意义,则的取值范围是_____________.
三、解答题(共66分)
19.(10分)在平面直角坐标系网格中,格点A的位置如图所示:
(1)若点B坐标为(2,3),请你画出△AOB;
(2)若△AOB与△A′O′B′关于y轴对称,请你画出△A′O′B';
(3)请直接写出线段AB的长度.
20.(6分)金堂某养鸭场有1811只鸭准备对外出售.从中随机抽取了一部分鸭,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)养鸭场随机共抽取鸭______只,并补全条形统计图;
(2)请写出统计的这组数据的众数为______、中位数为_______,并求这组数据的平均数(精确到1.11);
(3)根据样本数据,估计这1811只鸭中,质量为的约有多少只?
21.(6分)(1)因式分解:.
(2)解方程:.
(3)先化简:,然后在,,,四个数中选一个你认为合适的数代入求值.
22.(8分)铜陵市“雨污分流”工程建设期间,某工程队承包了一段总长2400米的地下排水管道铺设任务,按原计划铺设800米后,为尽快完成任务,后来每天的工作效率比原计划提高了25%,结果共用13天完成任务.
(1)求原计划平均每天铺设管道多少米?
(2)若原来每天支付工人工资为2000元,提高工作效率后每天支付给工人的工资增长了30%,则完成整个工程后共支付工人工资多少元?
23.(8分)小明遇到这样一个问题
如图1,△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.
小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:
方法2:如图2,作BE⊥CD,垂足为点E.
方法3:如图3,作CF⊥AB,垂足为点F.
根据阅读材料,从三种方法中任选一种方法,证明∠ABC=2∠ACD.
24.(8分)如图所示,AB//DC,ADCD,BE平分∠ABC,且点E是AD的中点,试探求AB、CD与BC的数量关系,并说明你的理由.
25.(10分)如图,在平面直角坐标系中,直线l₁:yx与直线l₂:y=kx+b相交于点A(a,3),直线交l₂交y轴于点B(0,﹣5).
(1)求直线l₂的解析式;
(2)将△OAB沿直线l₂翻折得到△CAB(其中点O的对应点为点C),求证:AC∥OB;
(3)在直线BC下方以BC为边作等腰直角三角形BCP,直接写出点P的坐标.
26.(10分)如图,点D,E分别在AB,AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:
(1)∠EGH>∠ADE;
(2)∠EGH=∠ADE+∠A+∠AEF.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、C
4、B
5、C
6、A
7、B
8、C
9、A
10、C
二、填空题(每小题3分,共24分)
11、①②④⑤.
12、三角形具有稳定性
13、2或1
14、1
15、等边
16、1
17、
18、≤4
三、解答题(共66分)
19、(1)见解析;(2)见解析;(3)AB=.
20、(1)51,图见解析;(2)2.4kg,2.2kg,2.21kg;(3)396只
21、(1)8(a﹣1)2;(2)=-;(1)+1;=2时,原式=1.
22、(1)原计划平均每天铺设管道160米;(2)完成整个工程后共支付工人工资30800元.
23、见解析
24、BC=AB+CD,理由见解析
25、(2)直线l₂的解析式为y=2x﹣5;(2)证明见解析;(3)P2(0,﹣9),P2(7,﹣6),P3(,).
26、(1)证明见解析;(2)证明见解析.
相关试卷
这是一份2023-2024学年广东省江门市蓬江区荷塘中学九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了如图,点A,B的坐标分别为等内容,欢迎下载使用。
这是一份2023-2024学年广东省高州市九校联考数学九年级第一学期期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了已知分式的值为0,则的值是,要得到抛物线y=2等内容,欢迎下载使用。
这是一份广东省江门蓬江区五校联考2023-2024学年数学九上期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,方程等内容,欢迎下载使用。