2023-2024学年山东省聊城市莘县八上数学期末达标测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,在中,平分交于点,平分,,交于点,若,则( )
A.75B.100C.120D.125
2.如果关于的分式方程有解,则的值为( )
A.B.
C.且D.且
3.下列命题的逆命题是真命题的是( )
A.同位角相等B.对顶角相等
C.等边对等角D.全等三角形的面积相等
4.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
A.B.3C.1D.
5.下列式子是分式的是( )
A.B.C.D.
6.已知关于x的方程的解是正整数,且k为整数,则k的值是( )
A.0B.C.0或6D.或6
7.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB的边OA,OB上分别取OM=ON,移动直角尺,使直角尺两边相同的刻度分别与M,N重合(即CM=CN).此时过直角尺顶点C的射线OC即是∠AOB的平分线.这种做法的道理是( )
A.HLB.SASC.SSSD.ASA
8.下列运算正确的是( )
A.3x+4y=7xyB.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3
9.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )
A.A点B.B点C.C点D.D点
10.直角三角形中,有两条边长分别为3和4,则第三条边长是( )
A.1B.5C.D.5或
二、填空题(每小题3分,共24分)
11.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第n个图形中有_____个实心圆.
12.如图,有一张长方形纸片,,.先将长方形纸片折叠,使边落在边上,点落在点处,折痕为;再将沿翻折,与相交于点,则的长为___________.
13.已知关于的一元二次方程有两个实数解,则的取值范围是________.
14.已知是完全平方式,则__________.
15.若,则代数式的值为_________.
16.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=___度.
17.观察下列式:;
;
;
.
则________.
18.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,已知A(a,1),B(b,1),其中a,b满足|a+2|+(b﹣4)2=1.
(1)填空:a=_____,b=_____;
(2)如果在第三象限内有一点M(﹣3,m),请用含m的式子表示△ABM的面积;
(3)在(2)条件下,当m=﹣3时,在y轴上有一点P,使得△ABP的面积与△ABM的面积相等,请求出点P的坐标.
20.(6分)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=1,BD=2,求CD的长.
21.(6分)已知:如图,在四边形中,,点是的中点.
(1)求证:是等腰三角形:
(2)当= ° 时,是等边三角形.
22.(8分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口490的普通公路升级成了比原来长度多35的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2,求公路升级以后汽车的平均速度
23.(8分)如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例
我们可以取直角梯形ABCD的一腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形——矩形.
1.图2中,矩形ABEF的面积是 ;(用含a,b,c的式子表示)
2.类比图2的剪拼方法,请你就图3(其中AD∥BC)和图4(其中AB∥DC)的两种情形分别画出剪拼成一个平行四边形的示意图.
3.小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.
24.(8分)先化简,再求值.(1﹣)÷的值,其中x=1.
25.(10分)如图,△ABC是等边三角形,点D是BC边上一动点,点E,F分别在AB,AC边上,连接AD,DE,DF,且∠ADE=∠ADF=60°.
小明通过观察、实验,提出猜想:在点D运动的过程中,始终有AE=AF,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:利用AD是∠EDF的角平分线,构造△ADF的全等三角形,然后通过等腰三角形的相关知识获证.
想法2:利用AD是∠EDF的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.
想法3:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证.
请你参考上面的想法,帮助小明证明AE=AF.(一种方法即可)
26.(10分)如图,与均为等腰直角三角形,
(1)如图1,点在上,点与重合,为线段的中点,则线段与的数量关系是 ,与的位置是 .
(2)如图2,在图1的基础上,将绕点顺时针旋转到如图2的位置,其中在一条直线上,为线段的中点,则线段与是否存在某种确定的数量关系和位置关系?证明你的结论.
(3)若绕点旋转任意一个角度到如图3的位置,为线段的中点,连接、,请你完成图3,猜想线段与的关系,并证明你的结论.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、C
4、A
5、B
6、D
7、C
8、D
9、B
10、D
二、填空题(每小题3分,共24分)
11、1n+1.
12、
13、且
14、±1
15、
16、10.
17、28-1
18、1
三、解答题(共66分)
19、(1).﹣2,4; (2).﹣3m;(3).(1,﹣3)或(1,3).
20、(1)证明见解析;(2)CD的长为.
21、(1)证明见解析;(2)150.
22、
23、(1);(2)见解析; (3)见解析.
24、.
25、见解析
26、(1)EF=FC,EF⊥FC;(2)EF=FC,EF⊥FC,证明见解析;(3)EF=FC,EF⊥FC,证明见解析;
2023-2024学年山东省聊城市莘县九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年山东省聊城市莘县九年级(上)期末数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年山东省聊城市九上数学期末达标测试试题含答案: 这是一份2023-2024学年山东省聊城市九上数学期末达标测试试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列图形中,不是轴对称图形的是,若点A等内容,欢迎下载使用。
2023-2024学年山东省聊城市莘县九上数学期末学业水平测试试题含答案: 这是一份2023-2024学年山东省聊城市莘县九上数学期末学业水平测试试题含答案,共8页。试卷主要包含了二次函数y=+2的顶点是等内容,欢迎下载使用。