|试卷下载
搜索
    上传资料 赚现金
    专题15 三角形及全等三角形(共30题)-备战2024年数学中考之真题分项汇编(全国通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题15 三角形及全等三角形(共30题)(原卷版).docx
    • 解析
      专题15 三角形及全等三角形(共30题)(解析版).docx
    专题15 三角形及全等三角形(共30题)-备战2024年数学中考之真题分项汇编(全国通用)01
    专题15 三角形及全等三角形(共30题)-备战2024年数学中考之真题分项汇编(全国通用)02
    专题15 三角形及全等三角形(共30题)-备战2024年数学中考之真题分项汇编(全国通用)03
    专题15 三角形及全等三角形(共30题)-备战2024年数学中考之真题分项汇编(全国通用)01
    专题15 三角形及全等三角形(共30题)-备战2024年数学中考之真题分项汇编(全国通用)02
    专题15 三角形及全等三角形(共30题)-备战2024年数学中考之真题分项汇编(全国通用)03
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载
    成套系列资料,整套一键下载

    专题15 三角形及全等三角形(共30题)-备战2024年数学中考之真题分项汇编(全国通用)

    展开
    这是一份专题15 三角形及全等三角形(共30题)-备战2024年数学中考之真题分项汇编(全国通用),文件包含专题15三角形及全等三角形共30题原卷版docx、专题15三角形及全等三角形共30题解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    一、单选题
    1.(2023·吉林长春·统考中考真题)如图,工人师傅设计了一种测零件内径的卡钳,卡钳交叉点O为、的中点,只要量出的长度,就可以道该零件内径的长度.依据的数学基本事实是( )
    A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等
    C.两余直线被一组平行线所截,所的对应线段成比例D.两点之间线段最短
    2.(2023·四川宜宾·统考中考真题)如图, ,且,,则等于( )

    A.B.C.D.
    3.(2023·云南·统考中考真题)如图,两点被池塘隔开,三点不共线.设的中点分别为.若米,则( )

    A.4米B.6米C.8米D.10米
    4.(2023·四川眉山·统考中考真题)如图,中,,则的度数为( )

    A.B.C.D.
    5.(2023·湖南·统考中考真题)下列长度的各组线段能组成一个三角形的是( )
    A.B.
    C.D.
    6.(2023·山西·统考中考真题)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心的光线相交于点,点为焦点.若,则的度数为( )

    A.B.C.D.
    7.(2023·福建·统考中考真题)阅读以下作图步骤:
    ①在和上分别截取,使;
    ②分别以为圆心,以大于的长为半径作弧,两弧在内交于点;
    ③作射线,连接,如图所示.
    根据以上作图,一定可以推得的结论是( )

    A.且B.且
    C.且D.且
    8.(2023·浙江台州·统考中考真题)如图,锐角三角形中,,点D,E分别在边,上,连接,.下列命题中,假命题是( ).

    A.若,则B.若,则
    C.若,则D.若,则
    9.(2023·河北·统考中考真题)在和中,.已知,则( )
    A.B.C.或D.或
    二、填空题
    10.(2023·江苏连云港·统考中考真题)一个三角形的两边长分别是3和5,则第三边长可以是__________.(只填一个即可)
    11.(2023·浙江金华·统考中考真题)如图,把两根钢条的一个端点连在一起,点分别是的中点.若,则该工件内槽宽的长为__________.

    12.(2023·新疆·统考中考真题)如图,在中,若,,,则______.

    13.(2023·安徽·统考中考真题)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,是锐角的高,则.当,时,____.

    14.(2023·浙江·统考中考真题)如图,在中,的垂直平分线交于点,交于点,.若,则的长是__________.

    15.(2023·湖北随州·统考中考真题)如图,在中,,D为AC上一点,若是的角平分线,则___________.

    16.(2023·湖北十堰·统考中考真题)一副三角板按如图所示放置,点A在上,点F在上,若,则___________________.

    17.(2023·浙江杭州·统考中考真题)如图,点分别在的边上,且,点在线段的延长线上.若,,则_________.

    18.(2023·湖北荆州·统考中考真题)如图,为斜边上的中线,为的中点.若,,则___________.

    19.(2023·湖南·统考中考真题)如图,在中,,按以下步骤作图:①以点为圆心,以小于长为半径作弧,分别交于点,;②分别以,为圆心,以大于的长为半径作弧,在内两弧交于点;③作射线,交于点.若点到的距离为,则的长为__________.
    20.(2023·广东深圳·统考中考真题)如图,在中,,,点D为上一动点,连接,将沿翻折得到,交于点G,,且,则______.

    三、解答题
    21.(2023·江苏苏州·统考中考真题)如图,在中,为的角平分线.以点圆心,长为半径画弧,与分别交于点,连接.

    (1)求证:;
    (2)若,求的度数.
    22.(2023·江西·统考中考真题)(1)计算:
    (2)如图,,平分.求证:.

    23.(2023·云南·统考中考真题)如图,是的中点,.求证:.

    24.(2023·四川宜宾·统考中考真题)已知:如图,,,.求证:.

    25.(2023·福建·统考中考真题)如图,.求证:.
    26.(2023·全国·统考中考真题)如图,点C在线段上,在和中,.
    求证:.

    27.(2023·四川乐山·统考中考真题)如图,AB、CD相交于点O,AO=BO,AC∥DB.求证:AC=BD.
    28.(2023·山东临沂·统考中考真题)如图,.

    (1)写出与的数量关系
    (2)延长到,使,延长到,使,连接.求证:.
    (3)在(2)的条件下,作的平分线,交于点,求证:.
    29.(2023·山东聊城·统考中考真题)如图,在四边形中,点E是边上一点,且,.

    (1)求证:;
    (2)若,时,求的面积.
    30.(2023·甘肃兰州·统考中考真题)综合与实践
    问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在和上分别取点C和D,使得,连接,以为边作等边三角形,则就是的平分线.

    请写出平分的依据:____________;
    类比迁移:
    (2)小明根据以上信息研究发现:不一定必须是等边三角形,只需即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在的边,上分别取,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线是的平分线,请说明此做法的理由;
    拓展实践:
    (3)小明将研究应用于实践.如图4,校园的两条小路和,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)

    相关试卷

    专题15 三角形及全等三角形(共30题)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题15 三角形及全等三角形(共30题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题15三角形及全等三角形共30题原卷版docx、专题15三角形及全等三角形共30题解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    专题30 新定义与阅读理解创新型问题(共31题)-备战2024年数学中考之真题分项汇编(全国通用): 这是一份专题30 新定义与阅读理解创新型问题(共31题)-备战2024年数学中考之真题分项汇编(全国通用),文件包含专题30新定义与阅读理解创新型问题共31题原卷版docx、专题30新定义与阅读理解创新型问题共31题解析版docx等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。

    专题29 规律探究题(共26题)-备战2024年数学中考之真题分项汇编(全国通用): 这是一份专题29 规律探究题(共26题)-备战2024年数学中考之真题分项汇编(全国通用),文件包含专题29规律探究题共26题原卷版docx、专题29规律探究题共26题解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题15 三角形及全等三角形(共30题)-备战2024年数学中考之真题分项汇编(全国通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map