专题09+竖直面内的圆周运动模型---2024届新课标高中物理模型与方法
展开目录
TOC \ "1-3" \h \u \l "_Tc10365" 一.一般圆周运动的动力学分析 PAGEREF _Tc10365 \h 1
\l "_Tc20665" 二.竖直面内“绳、杆(单、双轨道)”模型对比分析 PAGEREF _Tc20665 \h 1
\l "_Tc24944" 三.竖直面内圆周运动常见问题与二级结论 PAGEREF _Tc24944 \h 2
\l "_Tc12472" 三.过拱凹形桥模型 PAGEREF _Tc12472 \h 29
一.一般圆周运动的动力学分析
如图所示,做圆周运动的物体,所受合外力与速度成一般夹角时,可将合外力沿速度和垂直速度分解,则由牛顿第二定律,有:
v
F
Fτ
Fn
,aτ改变速度v的大小
,an改变速度v的方向,
作一般曲线运动的物体,处理轨迹线上某一点的动力学时,可先以该点附近的一小段曲线为圆周的一部分作曲率圆,然后即可按一般圆周运动动力学处理。
v
F
Fτ
Fn
,aτ改变速度v的大小
,an改变速度v的方向,,ρ为曲率圆半径。
二.竖直面内“绳、杆(单、双轨道)”模型对比分析
三.竖直面内圆周运动常见问题与二级结论
【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A和最低点记为C,与原点等高的位置记为B。圆周的半径为
要使小球做完整的圆周运动,当在最高点A 的向心力恰好等于重力时,由可得①
对应C点的速度有机械能守恒
得②
当小球在C点时给小球一个水平向左的速度若小球恰能到达与O点等高的D位置则由机械能守恒
得③
小结:(1).当时小球能通过最高点A小球在A点受轨道向内的支持力
由牛顿第二定律④
(2).当时小球恰能通过最高点A小球在A点受轨道的支持力为0
由牛顿第二定律。⑤
(3).当时小球不能通过最高点A小球在A点,上升至DA圆弧间的某一位向右做斜抛运动离开圆周,且v越大离开的位置越高,离开时轨道的支持力为0
在DA段射重力与半径方向的夹角为则、
(4).当时小球不能通过最高点A上升至CD圆弧的某一位置速度减为0之后沿圆弧返回。上升的最高点为C永不脱离轨道
【问题2】常见几种情况下物体受轨道的作用力
(1)从最高点A点静止释放的小球到达最低点C:由机械能守恒
在C点由牛顿运动定律: 得⑥
(2)从与O等高的D点(四分之一圆弧)处静止释放到达最低点C:由机械能守恒
在C点由牛顿运动定律: 得⑦
(3)从A点以初速度释放小球到达最低点
由机械能守恒
在C点由牛顿运动定律: 得⑧
【模型演练1】(2023·山东·模拟预测)如图所示,两个圆弧轨道竖直固定在水平地面上,半径均为R,a轨道由金属凹槽制成,b轨道由金属圆管制成(圆管内径远小于R),均可视为光滑轨道。在两轨道右端的正上方分别将金属小球A和B(直径略小于圆管内径)由静止释放,小球距离地面的高度分别用和表示,两小球均可视为质点,下列说法中正确的是( )
A.若,两小球都能沿轨道运动到轨道最高点
B.若,两小球沿轨道上升的最大高度均为R
C.适当调整和,均可使两小球从轨道最高点飞出后,恰好落在轨道右端口处
D.若使小球沿轨道运动并且从最高点飞出,的最小值为,B小球在的任何高度释放均可
【答案】BD
【详解】AD.B轨道是双轨模型,到达最高点的最小速度为零。即若时,B球能沿轨道运动到最高点;若A小球恰好运动到最高点,则有
解得
可知,若小球A能够到达最高点,需要
选项A错误,D正确;
B.若,根据机械能守恒定律可知,两小球沿轨道上升的最大高度均为R,不超过过圆心的水平线,选项B正确;
C.B小球从轨道最高点飞出后,恰好落在轨道右端口,则有
对B球有
解得
对A球,从最高点射出时最小速度为此时根据
解得
则无论如何调节hA都不可能使A小球从轨道最高点飞出后,恰好落在轨道右端口处,选项C错误;
故选BD。
【模型演练2】.(2023·河北沧州·沧县中学校考模拟预测)一不可伸长的轻绳上端悬挂于点,另一端系有质量为的小球,保持绳绷直将小球拉到绳与竖直方向夹角为的点由静止释放,运动到点的正下方时绳断开,小球做平抛运动,已知点离地高度为,绳长为,重力加速度大小为,不计空气阻力,下列说法正确的是( )
A.在绳断开前,小球受重力、绳的拉力和向心力作用
B.在绳断开前瞬间,小球处于失重状态
C.在绳断开前瞬间,小球所受绳子的拉力大小为
D.若夹角不变,当时,落点距起点的水平距离最远
【答案】CD
【详解】A.在绳断开前,小球在竖直平面内做圆周运动,小球只受重力和绳的拉力作用,故A错误;
B.在绳断开前瞬间,小球加速度方向竖直向上,处于超重状态,故B错误;
C.在绳断开前瞬间,设小球受绳子拉力为,根据牛顿第二定律可得
质量为的小球由静止开始,运动到点正下方过程中机械能守恒,则有
联立解得
故C正确;
D.绳断开后,小球做平抛运动,在水平方向上做匀速直线运动,则有
在竖直方向上做自由落体运动,则有
联立解得
根据基本不等式可知,当
即时,落点距起点的水平距离最远,故D正确。
故选CD。
【模型演练3】.(2023·全国·高三专题练习)如图所示,被锁定在墙边的压缩弹簧右端与质量为0.2kg、静止于A点的滑块P接触但不粘连,滑块P所在光滑水平轨道与半径为0.8m的光滑半圆轨道平滑连接于B点,压缩的弹簧储存的弹性势能为2.8J,重力加速度取10m/s2,现将弹簧解除锁定,滑块P被弹簧弹出,脱离弹簧后冲上半圆轨道的过程中( )
A.可以到达半圆轨道最高点D
B.经过B点时对半圆轨道的压力大小为9N
C.不能到达最高点D,滑块P能到达的最大高度为1.35m
D.可以通过C点且在CD之间某位置脱离轨道,脱离时的速度大小为2.2m/s
【答案】BC
【详解】A.设滑块P恰能通过最高点D,则有
解得
则滑块P从B点到D点,根据动能定理有
解得滑块在B点的动能为
所以滑块不能到达半圆轨道最高点D,故A错误;
B.滑块经过B点时的速度大小为vB,根据功能关系可得
在B点根据牛顿第二定律可得
联立解得
根据牛顿第三定律可知对半圆轨道的压力大小为9N,故B正确;
CD.滑块在C点的重力势能为
则滑块可以通过C点且在CD之间某位置脱离轨道,此时的速度大小为v
根据功能关系可得
根据牛顿第二定律可得
联立解得
,
滑块离开轨道后做斜上抛运动
根据功能关系可得
解得滑块P能到达的最大高度为
故C正确,D错误。
故选BC。
【模型演练4】.(2023·河南安阳·安阳一中校考模拟预测)如图甲所示,若有人在某星球上用一轻质绳拴着一质量为m的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时速度大小为v,绳对小球的拉力为T,其图像如图乙所示,则下列选项正确的是( )
A.轻质绳长为
B.当地的重力加速度为
C.当时,轻质绳的拉力大小为
D.只要,小球在最低点和最高点时绳的拉力差均为6a
【答案】BD
【详解】A.在最高点时,绳对小球的拉力和重力的合力提供向心力,则有
得
由图像知,时,。图像的斜率
则有
解得绳长
A错误;
B.当时,,代入
得
得
B正确;
C.当时,代入
解得
C错误;
D.由图知只要,在最高点绳子的拉力大于0,根据牛顿第二定律知,在最高点有
在最低点有
从最高点到最低点的过程中,根据机械能守恒定律得
联立解得
即小球在最低点和最高点时绳的拉力差均为,D正确。
故选BD。
【模型演练5】.(2023春·山东济南·高三统考阶段练习)如图所示,长为L的轻绳一端固定在O点,另一端固定一小球(可看成质点),现使小球在最低点获得的水平初速度,取重力加速度为g,在此后的运动过程中,下列说法正确的是( )
A.轻绳第一次刚好松弛时,轻绳与竖直向上方向夹角的余弦值为
B.轻绳第一次刚好松弛时,轻绳与竖直向上方向夹角的余弦值为
C.小球第一次运动到最高点时与O点的高度差为
D.小球第一次运动到最高点时与O点的高度差为
【答案】BC
【详解】AB.小球以初速度绕O点做圆周运动,当轻绳第一次刚好松弛时,绳的拉力为零,设此时的速度大小为,轻绳与竖直向上方向夹角为,如图所示
由径向合力提供向心力,有
由动能定理有
联立解得
,
故A错误,B正确;
CD.绳子松弛后,小球只受重力,以速度做斜上抛运动,竖直向上做匀减速直线运动,当小球到达最高点时竖直方向的速度减为零,有
而
则小球第一次运动到最高点时与O点的高度差为
故C正确,D错误。
故选BC。
【模型演练6】.(2022·全国·高三专题练习)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道半径为R,小球直径略小于管径(管径远小于R),则下列说法正确的是(重力加速度为g)( )
A.小球通过最高点时的最小速度
B.小球通过最高点时的最小速度vmin=0
C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力
D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力
【答案】BC
【详解】AB.小球沿管道上升到最高点时的速度可以为0,故A错误,B正确;
C.小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力FN与小球重力在背离圆心方向的分力F的合力提供向心力,即
因此,外侧管壁一定对球有作用力,而内侧管壁无作用力,故C正确;
D.小球在水平线ab以上的管道中运动时,当只有重力提供向心力时,外侧管壁对小球无作用力,故D错误。
故选BC。
【模型演练7】.(2023·全国·高三专题练习)如图所示,一轻绳系一小球竖直悬挂在O点,现保持绳处于拉直状态,将小球拉至与O等高的A点,由静止自由释放小球。球运动过程中经过C点时,绳与竖直方向的夹角为,以下判断正确的是( )
A.小球下摆到最低点的过程中,重力平均功率为0
B.小球运动至C点时,其加速度大小为
C.小球运动至C点时,轻绳对小球的拉力大小
D.若小球经过C点时重力功率最大,则
【答案】CD
【详解】A.下落的过程中,重力做功不等于0,根据
可知重力的平均功率不为0,A错误;
B.小球运动至C点时,对小球分析可知,其切向有
解得切向加速度大小为
小球做圆周运动,沿半径方向还具有向心加速度,因此小球运动至C点时,其加速度大小必定大于,B错误;
C.设绳长为l,根据机械能守恒
,
解得
C正确;
D.重力功率最大时,小球在竖直方向的分速度应该达到最大值,可知此时竖直方向合力为0,因此
解得
D正确。
故选CD。
【模型演练8】.(2023·高三课时练习)如图所示,轻绳的上端系于天花板上的O点,下端系有一只小球。将小球拉离平衡位置一个角度后无初速释放。当绳摆到竖直位置时,与钉在O点正下方P的钉子相碰。在绳与钉子相碰瞬间,以下判断正确的是( )
A.小球的线速度突然增大B.小球的角速度突然增大
C.小球的向心加速度突然减小D.小球所受拉力突然增大
【答案】BD
【详解】A.绳碰钉瞬间,球受的重力和拉力都在竖直方向,与速度方向垂直,因此不改变速度大小,即线速度不变,故A错误;
B.该瞬间球做圆周运动的半径突然变小,根据可知,v不变,r变小,则突然增大,故B正确;
C.根据可知,v不变,r变小,则a突然增大,故C错误;
D.此时根据牛顿第二定律有
可知r变小,则F突然增大,故D正确。
故选BD。
【模型演练9】.(2023·湖北·模拟预测)有一种被称为“魔力陀螺”的玩具如图甲所示,陀螺可在圆轨道外侧旋转而不脱落,好像轨道对它施加了魔法一样,它可等效为一质点在圆轨道外侧运动模型,如图乙所示。在竖直平面内固定的强磁性圆轨道半径为,A、两点分别为轨道的最高点与最低点。质点沿轨道外侧做完整的圆周运动,受圆轨道的强磁性引力始终指向圆心且大小恒为,当质点以速率通过A点时,对轨道的压力为其重力的7倍,不计摩擦和空气阻力,质点质量为,重力加速度为,则()
A.强磁性引力的大小
B.质点在点对轨道的压力小于在点对轨道的压力
C.只要质点能做完整的圆周运动,则质点对A、两点的压力差恒为
D.若强磁性引力大小为,为确保质点做完整的圆周运动,则质点通过点的最大速率为
【答案】ACD
【详解】A.在A点,对质点,由牛顿第二定律有
根据牛顿第三定律有
解得
故A正确;
BCD.质点能完成圆周运动,在A点根据牛顿第二定律有
根据牛顿第三定律有
在B点,根据牛顿第二定律有
根据牛顿第三定律有
从A点到B点过程,根据动能定理
解得
若磁性引力大小恒为F,在B点,根据牛顿第二定律
当FB=0,质点速度最大
vB=vBm
解得
选项B错误,CD正确。
故选ACD。
【模型演练10】.(2023·湖南·模拟预测)一半径为r的小球紧贴竖直放置的圆形管道内壁做圆周运动,如图甲所示。小球运动到最高点时管壁对小球的作用力大小为,小球的速度大小为v,其图像如图乙所示。已知重力加速度为g,规定竖直向下为正方向,不计一切阻力。则下列说法正确的是( )
A.小球的质量为
B.圆形管道内侧壁半径为
C.当时,小球受到外侧壁竖直向上的作用力,大小为
D.小球在最低点的最小速度为
【答案】AB
【详解】A.规定竖直向下为正方向,设圆形管道内侧壁半径为R,小球受到圆形管道的作用力大小为,在最高点,由牛顿第二定律,当时
当时,由重力提供向心力有
解得
当时,由牛顿第二定律有
解得
当时,由牛顿第二定律有
解得
故
故小球的质量为或,故A正确;
B.当时
解得圆形管内侧壁半径
故B正确;
C.当时,小球受到外侧壁竖直向下的作用力,由牛顿第二定律有
解得
故C错误;
D.根据能量守恒定律,当小球在最高点具有最小速度(为零)时,其在最低点的速度最小,即
故D错误。
故选AB。
【模型演练11】(2023·福建·模拟预测)如图1,在竖直平面内固定一光滑的半圆形轨道,半径为,小球以一定的初速度从最低点A冲上轨道,图2是小球在半圆形轨道上从A运动到的过程中,其速度平方与其对应高度的关系图像。已知小球在最高点受到轨道的作用力为,空气阻力不计,点为轨道中点,重力加速度取,下列说法错误的是( )
A.最高点时小球所受的合外力竖直向下
B.图2中
C.小球在B点受到轨道作用力为
D.小球质量为
【答案】C
【详解】A.在最高点,小球所受合外力提供向心力,故方向竖直向下,A正确,不符合题意;
D.由图2可得在最高点,小球的速度,由牛顿第二定律
可解得小球的质量
故D正确,不符合题意;
B.小球从A运动到的过程中,由机械能守恒定律
解得
故B正确,不符合题意;
C.小球从A运动到B的过程中,由机械能守恒定律
解得
小球在B点受到轨道作用力为
故C错误,符合题意。
故选C。
【模型演练12】.(2023·全国·高三专题练习)如图甲所示,用一轻质绳拴着一质量为的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为,小球在最高点的速度大小为,其图像如图乙所示,则( )
A.轻质绳长为
B.当地的重力加速度为
C.当时,轻质绳的拉力大小为
D.只要,小球在最低点和最高点时绳的拉力差均为
【答案】D
【详解】A.小球运动到最高点时,对小球受力分析,由牛顿第二定律有
可得
可知图线斜率为
可得轻质绳长为
故A错误;
B.由图像可知纵轴上截距的绝对值为
则有
故B错误;
C.由图像可知
故当时,有
故C错误;
D.从最高点到最低点,由机械能守恒有
在最低点对小球受力分析,由牛顿第二定律有
联立可得小球在最低点和最高点时绳的拉力差为
故D正确。
故选D。
【模型演练13】.(2023·辽宁·校联考模拟预测)如图所示,一长为L的轻绳拉着质量为m的小球保持静止。现在给小球一个水平初速度,使小球在竖直面内做完整的圆周运动,不计空气阻力,重力加速度为g,则下列判断正确的是( )
A.小球在最高点的速度可以等于0
B.小球获得的初速度大小为
C.小球做圆周运动的过程中仅有一处合力指向圆心
D.小球过最低点与最高点时受到绳的拉力大小之差等于6mg
【答案】D
【详解】A.小球在竖直面内做完整的圆周运动,若小球恰好能通过最高点,则有重力提供向心力,可得
解得
可知小球能通过最高点的最小速度是,因此小球在最高点的速度不可以等于0,A错误;
B.若小球恰好能通过最高点,设小球获得的初速度大小为v',则在最低点时由动能定理,则有
解得
由以上计算可知,是小球获得的初速度大小的最小值,有可能比这个速度要大,B错误;
C.小球在竖直面内做完整的变速圆周运动,由以上分析可知,小球在最高点和最低点处合力指向圆心,C错误;
D.设小球在最高点时的速度为v0,在最低点时的速度为,由动能定理可得
小球在最高点时,由牛顿第二定律可得
小球在最低点时,由牛顿第二定律可得
联立以上各式解得
D正确。
故选D。
【模型演练14】(2023春·重庆·高三统考阶段练习)如图所示,半径为R的光滑细圆管用轻杆固定在竖直平面内。某时刻,质量为1kg、直径略小于细圆管内径的小球A(可视为质点)从细管最高点静止释放,当小球A和细圆管轨道圆心连线与竖直方向夹角为37°时,小球对轨道的压力大小为( )()
A.38NB.40NC.42ND.44N
【答案】D
【详解】以小球为对象,根据动能定理可得
解得
根据牛顿第二定律可得
解得
根据牛顿第三定律可知,小球对轨道的压力大小为。
故选D。
【模型演练15】.(2023秋·黑龙江牡丹江·高三校考阶段练习)如图所示,质量为M的物体内有光滑圆形轨道,现有一质量为m的小滑块沿该圆形轨道的竖直面做圆周运动,A、C为圆周的最高点和最低点,B、D与圆心O在同一水平线上。小滑块运动时物体M保持静止,关于物体M对地面的压力N和地面对物体的摩擦力,下列说法正确的是( )
A.滑块运动到A点时,,M与地面无摩擦力
B.滑块运动到B点时,,物体所受摩擦力方向向右
C.滑块运动到C点时,,M与地面无摩擦力
D.滑块运动到D点时,,物体所受摩擦力方向向左
【答案】B
【详解】A.当到达最高点时,整个装置处于失重状态,所以地面对整体的
且与地面之间无摩擦力,A错误;
B.滑块运动到B点时,物块与M之间的作用力在水平方向上,所以N=Mg,且M对物体的作用力提供了向心力,M对物体作用力向右,所以物体对M作用力向左,而M静止,地面对M的摩擦力向右,B正确;
C.物块到达C点时,M对物块的作用力竖直向上,与物块重力的合力一起提供了向心力,处于超重状态,所以
N>( M+m) g
水平方向没有作用力,可以判断M与地面无摩擦力,C错误;
D.运动到D点时,物块与M之间的作用力在水平方向上,所以N=Mg,且M对物体的作用力提供了向心力,M对物体作用力向左,所以物体对M作用力向右,而M静止,地面对M的摩擦力向左,D错误。
故选B。
【模型演练16】(2023·四川成都·统考三模)某同学用图(a)所示装置探究竖直面内的圆周运动。固定在同一竖直面的轨道由三部分构成,直轨道与圆轨道在端相切,最低点处有压力传感器,圆轨道的端与等高且两端的切线均竖直,,两圆轨道的半径相同、圆心等高。将一小球从轨道上不同位置静止释放,测出各次压力传感器的示数,得到与释放点到点的高度的关系图像如图(b)。小球可视为质点且恰好能自由通过D、E端口,不计摩擦力和空气阻力,重力加速度。
(1)求小球的质量和两圆轨道的半径;
(2)要让小球沿圆轨道通过点,求释放点的高度满足的条件。
【答案】(1),;(2)
【详解】(1)从释放到C点,由机械能守恒定律有
在C点,由牛顿第三定律知,支持力大小等于压力大小,由牛顿第二定律有
两式联立得
结合题图(b)的图像可知
解得
(2)从释放到G点,由机械能守恒定律有
恰好到达点的条件是球对轨道的压力恰为零,由牛顿第二定律有
代入数据解得
故满足的条件是:。
【模型演练17】(2023·河北·校联考三模)如图所示,半径为R的光滑圆轨道固定在竖直平面内,一小球(可看成质点)静止在轨道的最低点,现使小球在最低点获得的水平初速度,重力加速度为g,在此后的运动过程中,求:
(1)小球刚要脱离圆轨道时,小球与轨道圆心的连线与竖直向上方向夹角的余弦值;
(2)小球第一次运动到最高点时与轨道圆心的高度差。
【答案】(1);(2)
【详解】(1)小球刚要脱离圆轨道时,小球与轨道圆心的连线与竖直方向夹角为,此时小球的速度大小为,此时对小球
对小球由动能定理可得
解得
(2)小球到达最高点的速度大小为
对小球由动能定理可得
解得
小球第一次运动到最高点时与轨道圆心的高度差为
【模型演练18】.(2023·上海·高三专题练习)如图所示,AB段是长s=2.5m 的粗糙水平轨道,BC段是半径R=0.5m的光滑半圆弧轨道,半圆弧轨道在B处与AB相切,且处于竖直面内。质量m=0.1kg的小滑块,受水平恒力F的作用由A点从静止开始运动,到达B点时撤去力F。已知小滑块与AB间的动摩擦因数为0.25,设小滑块在AB上所受最大静摩力的大小即为滑动摩擦力的大小,g取10m/s2。
(1)为使小滑块能到达C点,小滑块在B点时的速度至少为多大?
(2)为使小滑块能做沿圆弧轨道返回的运动,F的取值范围是什么?
(3)第(2)问的条件下,小滑块是否有可能返回到A点?试分析说明理由。
【答案】(1)5m/s;(2)0.25N < F ≤ 0.45N;(3)见解析
【详解】(1)在C点时由
推得
(2)要使小滑块在AB轨道上能动起来,必需满足,即
为使小滑块能做沿圆弧轨道返回的运动,小滑块最高只能到达与 O 点同高的位置:
对于小滑块在AB轨道上的匀加速运动,有
由
推得
所以
0.25 N < F ≤ 0.45 N
(3)当 F = 0.45 N 时
小滑块从 B 点返回 A 点,克服摩擦力做的功
J
因为 ,所以小滑块不可能返回 A 点。
当 F 取其它值时,小滑块在 B 点时的动能更少,更不可能返回到 A 点。总之,第(2)问的条件下,小滑块不可能回到 A 点。
【模型演练19】.(2022·全国·高三专题练习)物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定。若某时刻F需=F供,则物体能做圆周运动;若F需>F供,物体将做离心运动;若F需
(2)在小球以速度v1=4 m/s水平抛出的瞬间,绳所受拉力为多少?
(3)在小球以速度v2=1 m/s水平抛出的瞬间,绳若受拉力,求其大小;若不受拉力,试求绳子再次伸直时所经历的时间。
【答案】(1) m/s;(2)3 N;(3)不受拉力,0.6 s
【详解】(1)小球做完整的圆周运动的临界条件为重力刚好提供运动到顶点时所需的向心力,则
解得施加给小球的最小速度
v0=m/s
(2)因为v1>v0,故绳受拉力。根据牛顿第二定律有
代入数据得绳所受拉力
T=3 N
(3)因为v2
L2=(y-L)2+x2
x=v2t
代入数据联立解得
t=0.6 s
【模型演练20】.(2023·天津·模拟预测)如图所示,一玩溜冰的小孩(可视作质点)质量为m=30kg,他在左侧水平平台上滑行一段距离后平抛,恰能无碰撞地沿圆弧切线从A点进入光滑竖直圆弧轨道,并沿轨道下滑,A、B为圆弧两端点,其连线水平。已知从D点以的速度向右滑动,经t=0.5s到达E点,圆弧半径为R=1.0m,对应圆心角为,平台与AB连线的高度差为h=0.8m。小孩到达圆轨道O点时速度的大小为(计算中取,,)求:
(1)小孩运动到圆弧轨道最低点O时对轨道的压力;
(2)小孩平抛的初速度;
(3)小孩溜冰与平台DE的动摩擦因数。
【答案】(1),方向竖直向下;(2);(3)
【详解】(1)由小孩运动到圆弧轨道最低点时的受力可知
代入数据解得,轨道对小车的支持力为
根据牛顿第三定律可知,小孩运动到圆弧轨道最低点O时对轨道的压力与轨道对小车的支持力大小相等,方向相反,即
方向竖直向下
(2)将小孩在A点的速度分解成水平方向和竖直方向,如图所示,则
根据动能定理可得
解之得
故小孩平抛的初速度
(3)由题可知,小孩在平台上做匀减速直线运动,则
联立解得
三.过拱凹形桥模型
【模型演练21】(2023·湖南·统考高考真题)如图,固定在竖直面内的光滑轨道ABC由直线段AB和圆弧段BC组成,两段相切于B点,AB段与水平面夹角为θ,BC段圆心为O,最高点为C、A与C的高度差等于圆弧轨道的直径2R。小球从A点以初速度v0冲上轨道,能沿轨道运动恰好到达C点,下列说法正确的是( )
A.小球从B到C的过程中,对轨道的压力逐渐增大
B.小球从A到C的过程中,重力的功率始终保持不变
C.小球的初速度
D.若小球初速度v0增大,小球有可能从B点脱离轨道
【答案】AD
【详解】A.由题知,小球能沿轨道运动恰好到达C点,则小球在C点的速度为
v 0
则小球从C到B的过程中,有
联立有
FN= 3mgcsα-2mg
则从C到B的过程中α由0增大到θ,则csα逐渐减小,故FN逐渐减小,而小球从B到C的过程中,对轨道的压力逐渐增大,A正确;
B.由于A到B的过程中小球的速度逐渐减小,则A到B的过程中重力的功率为
P = -mgvsinθ
则A到B的过程中小球重力的功率始终减小,则B错误;
C.从A到C的过程中有
解得
C错误;
D.小球在B点恰好脱离轨道有
则
则若小球初速度v0增大,小球在B点的速度有可能为,故小球有可能从B点脱离轨道,D正确。
故选AD。
【模型演练22】(2023·全国·高三专题练习)在竖直平面内光滑圆轨道的外侧,有一小球(可视为质点)以某一水平速度从最高点A出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,圆轨道半径为,重力加速度为,不计空气阻力。下列说法中正确的是( )
A.小球从A点出发的速度大小
B.小球经过B点时的速度大小
C.小球经过B点时速度变化率大小为
D.小球落在C点时的速度方向竖直向下
【答案】C
【详解】A.根据题意可知,小球在A点没有脱离轨道,则小球对圆轨道的压力不为零,由牛顿第二定律有
解得
故A错误;
B.根据题意可知,小球在B点脱离轨道,则小球对圆轨道的压力为零,只受重力作用,设此时小球与圆心的连线与竖直方向的夹角为,由牛顿第二定律有
解得
故B错误;
C.根据题意可知,小球在B点脱离轨道,则小球对圆轨道的压力为零,只受重力作用,小球的加速度为,即小球经过B点时速度变化率大小为,故C正确;
D.根据题意可知,小球在B点脱离轨道,速度方向为斜向下,只受重力作用,水平方向做匀速直线运动,小球落地时,水平方向速度不为零,则小球落在C点时的速度方向不可能竖直向下,故D错误。
故选C。
【模型演练23】.(2023秋·辽宁盘锦·高三辽河油田第二高级中学校考期末)如图所示,上表面光滑,半径为的半圆柱体放在水平面上,小物块位于半圆柱体顶端,若给小物块一水平速度,重力加速度取,下列说法正确的是( )
A.小物块将沿半圆柱体表面滑下来
B.小物块落地时水平位移大小为
C.小物块落地速度大小为
D.小物块落地时速度方向与水平地面成角
【答案】C
【详解】A.设小物块在半圆柱体顶端做圆周运动的临界速度为,则重力刚好提供向心力时,由牛顿第二定律得
解得
因为
所以小物块将离开半圆柱体做平抛运动,故A错误;
B.小物块做平抛运动时竖直方向满足
水平位移为
联立解得
故B错误;
C.小物块落地时竖直方向分速度大小为
落地时速度的大小为
联立解得
故C正确;
D.由于
故落地时速度方向与水平地面成角,满足
解得
故D错误。
故选C。
【模型演练24】(2023·湖北荆州市高三上学期质量检测)一辆汽车匀速率通过一座圆弧形拱形桥后,接着又以相同速率通过一圆弧形凹形桥.设两圆弧半径相等,汽车通过拱形桥桥顶时,对桥面的压力FN1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力为FN2,则FN1与FN2之比为( )
A.3∶1 B.3∶2
C.1∶3 D.1∶2
【答案】选C.
【解析】:汽车过圆弧形桥的最高点(或最低点)时,由重力与桥面对汽车的支持力的合力提供向心力.如图甲所示,汽车过圆弧形拱形桥的最高点时,由牛顿第三定律可知,汽车受桥面对它的支持力与它对桥面的压力大小相等,即FN1=F′N1①
所以由牛顿第二定律可得
mg-F′N1=eq \f(mv2,R)②
同样,如图乙所示,F′N2=FN2,汽车过圆弧形凹形桥的最低点时,有F′N2-mg=eq \f(mv2,R)③
由题意可知FN1=eq \f(1,2)mg④
由①②③④式得FN2=eq \f(3,2)mg,所以FN1∶FN2=1∶3.
【模型演练25】(2023·安徽合肥市第二次质检)如图,在一固定在水平地面上A点的半径为R的球体顶端放一质量为m的物块,现给物块一水平初速度v0,则( )
A.若v0=eq \r(gR),则物块落地点距离A点为 eq \r(2)R
B.若球面是粗糙的,当v0
【答案】D.
【解析】:若v0≥eq \r(gR),物块将离开球面做平抛运动,由y=2R=eq \f(gt2,2)、x=v0t,得x≥2R,A错误,D正确;若v0
轻杆模型(有支撑)
常见
类型
过最高点的临界条件
由mg=meq \f(v2,r)得v临=eq \r(gr)
由小球能运动即可得v临=0
对应最低点速度v低≥
对应最低点速度v低≥
绳不松不脱轨条件
v低≥或v低≤
不脱轨
最低点弹力
F低-mg =mv低2/r
F低=mg+mv低2/r,向上拉力
F低-mg =mv低2/r
F低=mg+mv低2/r,向上拉力
最高点弹力
过最高点时,v≥eq \r(gr),FN+mg=meq \f(v2,r),绳、轨道对球产生弹力FN=meq \f(v2,r)-mg
向下压力
(1)当v=0时,FN=mg,FN为向上支持力
(2)当0<v<eq \r(gr)时,-FN+mg=meq \f(v2,r),FN向上支持力,随v的增大而减小
(3)当v=eq \r(gr)时,FN=0
(4)当v>eq \r(gr)时,FN+mg=meq \f(v2,r),FN为向下压力并随v的增大而增大
在最高
点的FN
图线
取竖直向下为正方向
取竖直向下为正方向
拱形桥
圆轨外侧
凹形桥
示意图
v
作用力
最高点(失重):FN=G-mv2/R,可知:
(1)当v=0时,即汽车静止在最高点,FN=G;
(2)当汽车的速度增大到mv2/R=mg 即v= 时,FN=0,汽车在桥顶只受重力G,又具水平速度v,因此开始做平抛运动;
(3)当0≤v≤时,0≤FN≤mg,且速度v越大,FN越小;
(4)当v>时,汽车将脱离桥面,将在最高点做平抛运动,即所谓的“飞车”。
最高点(超重):FN=G+mv2/R可知:
(1)当v=0时,即汽车静止在最高点,FN=G;
(2)当汽车的速度v≠0时,FN>mg,且速度v越大,FN越大。
专题09 竖直面内的圆周运动模型-2024年新课标高中物理模型与方法: 这是一份专题09 竖直面内的圆周运动模型-2024年新课标高中物理模型与方法,文件包含专题09竖直面内的圆周运动模型原卷版docx、专题09竖直面内的圆周运动模型解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
专题08 水平面内的圆周运动模型-2024年新课标高中物理模型与方法: 这是一份专题08 水平面内的圆周运动模型-2024年新课标高中物理模型与方法,文件包含专题08水平面内的圆周运动模型原卷版docx、专题08水平面内的圆周运动模型解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
专题09 竖直面内的圆周运动模型---备战2024年高考物理模型与方法(新课标): 这是一份专题09 竖直面内的圆周运动模型---备战2024年高考物理模型与方法(新课标),文件包含专题09竖直面内的圆周运动模型原卷版docx、专题09竖直面内的圆周运动模型解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。