|试卷下载
搜索
    上传资料 赚现金
    2023-2024学年山东省名校考试联盟高一上学期11月期中检测数学试题(含解析)
    立即下载
    加入资料篮
    2023-2024学年山东省名校考试联盟高一上学期11月期中检测数学试题(含解析)01
    2023-2024学年山东省名校考试联盟高一上学期11月期中检测数学试题(含解析)02
    2023-2024学年山东省名校考试联盟高一上学期11月期中检测数学试题(含解析)03
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年山东省名校考试联盟高一上学期11月期中检测数学试题(含解析)

    展开
    这是一份2023-2024学年山东省名校考试联盟高一上学期11月期中检测数学试题(含解析),共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    1.已知集合A={x|x<0},B={x|-x2-x+2>0},则(∁RA)∩B=( )
    A. {x|02.已知函数f(x) = (m2-m-1)xm为幂函数,则m=( )
    A. -1或2B. 2C. -1D. 1
    3.若函数f(x)的定义域为[-1,2],则函数y=f(x2-1) x+1的定义域为( )
    A. (- 3,2]B. [0, 3]C. (-1,2]D. (-1, 3]
    4.已知a,b,c均为实数,则( )
    A. 若a>b,则ac2>bc2B. 若aab
    C. 若a>b且1a>1b,则b<05.已知命题p:∀x>0, 3-x>0,则命题p的否定是( )
    A. ∀x>0, 3-x≤0B. ∃x>0,3-x≤0
    C. ∃x>0, 3-x≤0D. ∀x≤0, 3-x≤0
    6.已知函数f(x)=x+ x+1,其定义域为M,值域为N.则“x∈M”是“x∈N”的条件.( )
    A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要
    7.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=12(|x-a2|+|x-2a2|-3a2).若∀x∈R,f(x-a)A. [-16,16]B. [0,16]C. [-13,13]D. (0,16)
    8.不等式x2+2axy+4y2≥0对于∀x∈[2,3],∀y∈[2,9]恒成立,则a的取值范围是( )
    A. [-2,+∞)B. [-5,+∞)C. [-133,+∞)D. [-1,+∞)
    二、多选题(本大题共4小题,共20分。在每小题有多项符合题目要求)
    9.已知函数f(x)=x2-2x+1,x⩽1-x+1,x>1,下列说法正确的是( )
    A. 函数f(x)是减函数
    B. ∀a∈R,f(a2)>f(a-1)
    C. 若f(a-4)>f(3a),则a的取值范围是(-2,+∞)
    D. 在区间[1,2]上的最大值为0
    10.已知a,b是两个正实数,满足a+b=1,则( )
    A. a+ b的最小值为1B. a+ b的最大值为 2
    C. a2+b2的最小值为12D. a2+b2的最大值为1
    11.已知函数f(x)=ax2-3x+ 4,若任意x1,x2∈[-1,+∞)且x1≠x2都有f(x1)-f(x2)x1-x2<-1,则实数a的值可以是( )
    A. -1B. -12C. 0D. 12
    12.已知函数f(x)的定义域为R,f(x-1)为奇函数,f(3x-2)为偶函数,则( )
    A. f(13)=0B. f(1)=0C. f(4)=0D. f(3)=0
    三、填空题(本大题共4小题,共20分)
    13.已知函数f(x)=2x+1x,x<0x2-3x+1,x≥0,则f(f(2))= .
    14.写出3x-1>0的一个必要不充分条件是 .
    15.关于x的不等式11-x≥2x的解集为 .
    16.设函数f(x)的定义域为R,满足f(x+1)=3f(x),且当x∈(0,1]时,f(x)= x(x-1).若对任意x∈(-∞,m],都有f(x)≥-1,则m的取值范围是 .
    四、解答题(本大题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤)
    17.(本小题10分)
    已知集合A={x|x-2x+1≤0},集合B={x|2m+3(1)当m=-2时,求A∪B;
    (2)若A∩B=B,求实数m的取值范围.
    18.(本小题12分)
    f(x)=1-x21+x2
    (1)判断f(x)的奇偶性,并加以证明;
    (2)求f(x)的值域.
    19.(本小题12分)
    命题p:关于x的方程x2+2ax+4a+5=0的两个不相等的正实根,命题q: a∈(m,7m+7),
    (1)若命题¬p为真命题,求a的取值范围;
    (2)若q是p的充分条件,求m的取值范围.
    20.(本小题12分)
    原定于2022年9月10日至25日在中国杭州举办的第19届亚洲运动会延期至2023年9月23日至10月8日在中国杭州举行,名称仍为杭州2022年第19届亚运会。杭州亚组委在亚奥理事会和中国奥委会的指导下,有关各方共同努力,为全世界人民呈现了一届“中国特色、浙江风采、杭州韵味、精彩纷呈”的体育文化盛会。运动会期间,杭州某互联网公司为保证直播信号的流畅,拟加大网络的研发投入。据了解,该公司原有员工200人,平均投入a(a>0)万元/人,现把该公司人员调整为两类:运营人员和服务人员,其中运营人员有x名,调整后运营人员的人均投入调整为a(m-4x%)万元/人,服务人员的人均投入增加2x%.
    (1)若使调整后服务人员的总投入不低于调整前的200人的总投入,则调整后的服务人员最多有多少人?
    (2)现在要求调整后服务人员的总投入始终不低于调整后运营人员的总投入,求m的最大值及此时运营人员的人数.
    21.(本小题12分)
    已知函数f(x)=ax2-(a-1)x-2,a∈R.
    (1)设a>-12,解关于x不等式f(x)(2)设a>0,若当x∈[-12,+∞)时f(x)的最小值为-94,求a的值.
    22.(本小题12分)
    已知函数f(x)= 3x-2-34x+12.
    (1)判断f(x)在区间[2,+∞)上的单调性并证明;
    (2)令g(x)=f(x)+34x-12,对∀x1∈[2,+∞),∃x2∈[2,+∞),使得(g(x1))2+2-m≥m 3x1-2-f(x2)成立,求m的取值范围.
    答案和解析
    1.【答案】B
    【解析】【分析】
    本题主要考查集合的交集及补集运算,属于基础题.
    先求得集合A的补集,再与集合B求交集可得.
    【解答】解:由题意得∁RA=xx⩾0,
    B={x|-x2-x+2>0}=x-2则(∁RA)∩B=x0⩽x<1.
    故选B.
    2.【答案】A
    【解析】【分析】
    由题意利用幂函数的定义和性质,得出结论.
    本题主要考查幂函数的定义和性质,属于基础题.
    【解答】解:∵函数f(x)=(m2-m-1)xm为幂函数,
    ∴m2-m-1=1,
    求得m=-1或2,
    3.【答案】D
    【解析】【分析】本题考查函数的定义域,属于简单题.
    由题得到-1≤x2-1≤2x+1>0,即可得解.
    【解答】解:函数y=f(x2-1) x+1有意义,得-1≤x2-1≤2x+1>0,解得-1所以函数y=f(x2-1) x+1的定义域为(-1, 3].
    故选:D
    4.【答案】C
    【解析】【分析】
    本题考查了不等式性质,属于基础题.
    利用特殊值法判断AB,利用不等式的性质以及作差法判断CD,
    【解答】
    解:A.当c=0时,有ac 2=bc ​2 故A错;
    B.若aC.若a>b且1a>1b,则1a-1b=b-aab>0,则ab<0,
    所以b<0D.若a0,a 2>ab;ab-b 2=b(a-b)>0,ab>b ​2,
    ∴a 2>ab>b ​2,故D错误.
    故选C.
    5.【答案】B
    【解析】【分析】
    本题主要考查含有量词的命题的否定,注意根式有意义的条件,比较基础.
    根据全称量词命题的否定为存在量词命题,改存在,否结论.
    【解答】
    解:命题为全称量词命题,则命题的否定为:∃x>0, 3-x≤0或3-x<0.
    即∃x>0,3-x≤0
    故选:B .
    6.【答案】C
    【解析】【分析】本题考查充要条件,属于简单题.
    根据充要条件的定义即可判断.
    【解答】解:y=f(x)定义域M=[-1,+∞),y=f(x)在[-1,+∞)是单调递增的,值域N=[-1,+∞),得M=N所以“x∈M”是“x∈N”的充要条件.
    7.【答案】D
    【解析】【分析】
    本题考查不等式恒成立问题,考查分段函数、函数的奇偶性及数形结合思想的应用,属中档题.
    当 x⩾0时,去绝对值得出f(x)的解析式,由 f(x)为奇函数,可得 f(x)的图象,由图象可得,-3a2+a>3a2,解得a的范围.
    【解答】
    解:当x≥0时,fx= -x,0≤x≤a2, -a2,a22a2.
    因为fx为奇函数,所以fx的图象如图所示,
    由∀x∈R,f(x-a)≤f(x),即f(x)图象向右平移a个单位后的图象总在f(x)图象下方,
    故-3a2+a>3a2,则0故选D
    8.【答案】A
    【解析】【分析】
    本题考查不等式与恒成立的综合类问题,在解答的过程当中充分体现了分离参数法的运用,属于中档题.
    先分离参数,再用换元法,利用基本不等式确定函数的最值,即可求得实数a的取值范围.
    【解答】
    解:因为不等式2axy≥-x2-4y2对于∀x∈[2,3],∀y∈[2,9]恒成立,
    所以不等式2a≥-(xy+4yx)对于∀x∈[2,3],∀y∈[2,9]恒成立,
    令t=yx∈[23,92],则-(t+4t)≤-4,当且仅当t=2时,等号成立,
    所以-(xy+4yx)的最大值为-4,所以2a≥-4,
    所以a≥-2,
    故选A.
    9.【答案】ACD
    【解析】【分析】本题考查了分段函数的单调性和利用函数的单调性求最值,是基础题.
    先得出f(x)在定义域上单调递减,再逐一判定即可.
    【解答】解:x≤1时,f(x)=(x-1)2+1,单调递减,x>1时,f(x)=-x+1也单调递减,且分点处的函数值都等于0,
    所以f(x)在定义域上单调递减,所以 A正确;
    因为a2-(a-1) =a2-a+1=(a-12)2+34>0,所以a2>a-1,
    又因为函数f(x)是减函数,所以f(a2)因为函数f(x)是减函数,所以a-4<3a,解得:a>-2,所以C正确;
    由f(x) 在区间[1,2]上单调递减,则f(x)的最大值为f(1)=0,所以D正确.
    10.【答案】BC
    【解析】【分析】
    本题考查利用基本不等式求最值,二次函数,属于基础题,
    利用不等式性质,基本不等式分别计算即可判定A、B、C,利用二次函数求最值即可判定D.
    【解答】
    解:对于选项A,由于a>0,b>0,且a+b=1,从而0所以a< a,b< b,从而a+b< a+ b,从而 a+ b>1,取不到1,故A错误;
    选项B,由 a+ b= a+b+2 ab= 1+2 ab≤ 1+2⋅a+b2= 2,
    当且仅当a=b=12时等号成立,从而 a+ b的最大值为 2,B正确;
    选项C,因为a2+b2=(a+b)2-2ab=1-2ab≥1-2(a+b2)2=12,
    当且仅当a=b=12时取等号,从而C正确;
    选项D,由a+b=1,得b=1-a,由b>0,得0从而a2+b2=a2+(1-a)2=2a2-2a+1=2(a-12)2+12,
    从而当a=0或1时取得最大值,但0故选BC.
    11.【答案】ABC
    【解析】【分析】
    本题主要考查的是函数的单调性问题,熟练二次函数的单调性是解题的关键,属于基础题.
    根据题意令g(x)=f(x)+x=ax2-2x+4,则g(x1)【解答】
    解:不妨令x1>x2,因为f(x1)-f(x2)x1-x2<-1,所以f(x1)-f(x2)即f(x1)+x1则g(x1)因为x1>x2,所以g(x)在[-1,+∞)上单调减,
    a=0时,符合题意。
    a≠0,则a<0--1a≤-1,解得:-1≤a<0,
    综上所述:实数a的取值范围是[-1,0],
    12.【答案】BD
    【解析】【分析】
    本题考查了函数的奇偶性、周期性和对称性,属于基础题.
    根据条件得出f(x)是以4为周期的周期函数,由此对选项分析即可.
    【解答】
    解:因为f(x-1)为奇函数,∴f(x-1)=-f(-x-1),
    所以f(x)关于(-1,0)对称,
    因为f(3x-2)为偶函数,∴f(3x-2)=f(-3x-2),所以f(x)关于x=-2对称,
    所以f(x)周期为4,所以f(-1)=f(3)=0.
    因为f(x)关于(-1,0)对称,所以f(x)+f(-2+x)=0,
    所以f(x)+f(-2-x)=f(x)+f(-2-x+4)=0,
    即f(x)+f(2-x)=0,故得到f(x)关于(1,0)和(3,0)对称,从而f(1)=0且f(3)=0
    故选BD.
    13.【答案】-3
    【解析】本题主要考查的是分段函数的求值,属于基础题.
    直接利用分段函数进行求值即可.
    解:由题,f(2)=-1,
    f(f(2))=f(-1)=-3.
    故答案为-3;
    14.【答案】x>0
    【解析】【分析】
    本题主要考查的是充分必要条件的判断,属于基础题.
    直接利用充分必要条件,写出条件即可.
    【解答】
    解:由3x-1>0可得x>13,
    故满足x>13一个必要不充分条件可以是x>0.
    故答案为x>0(答案不唯一)
    15.【答案】x|x<0或23⩽x<1
    【解析】【分析】
    本题主要考查的是分式不等式,属于基础题.
    直接利用分式不等式求解即可.
    【解答】
    解:由11-x≥2x可得,
    1x-1+2x=3x-2x-1x⩽0.
    等价于3x-2⩽0xx-1>0或3x-2⩾0xx-1<0,解得x<0或23⩽x<1,
    故原不等式的解集为x|x<0或23⩽x<1
    16.【答案】-∞,15- 56
    【解析】【分析】
    本题主要考查的是函数图像的平移,具体函数解析式的求法,二次函数的性质,函数的值域,一元二次不等式的恒成立问题,属于难题.
    根据f(x)解析式,求出函数分别在x∈0,1,x∈1,2,x∈2,3上的解析式,并求除相应的值域,在x∈2,3上解出f(x)≥-1,即可得到m的取值范围.
    【解答】
    解:因为f(x+1)=3f(x),则f(x)=3f(x-1),即f(x)向右平移1个单位,图象各点纵坐标变为原来的3倍,
    当x∈0,1时,f(x)=x(x-1)∈-14,0,
    当x∈1,2,x-1∈0,1时,f(x)=3f(x-1)=3(x-1)(x-2)∈-34,0,
    当x∈2,3,x-1∈1,2时,f(x)=3f(x-1)=9(x-2)(x-3)∈-94,0,
    令9(x-2)(x-3)=-1,解得x1=15+ 56,x2=15- 56,
    所以要使对任意x∈(-∞,m],都有f(x)≥-1,则m⩽15- 56,
    故m的取值范围是-∞,15- 56.
    17.【答案】解:(1)由x-2x+1≤0,解得:-1当m=-2时,B={x|-1A∪B={x|-1(2)因为A∩B=B,所以B⊆A,
    当B=⌀时,2m+3≥m2,解得:-1≤m≤3;
    当B≠⌀时,要满足题意需2m+3解之得:- 2≤m<-1,
    综上:实数m的取值范围为[- 2,3]
    【解析】本题考查了并集及其运算,考查集合的包含关系,解不等式,属于中档题.
    (1)解分式不等式化简集合A,然后利用集合并集运算求解;
    (2)由A∩B=B,所以B⊆A,分类讨论B是否为空集,列出关于m的不等式组求解即可.
    18.【答案】解:(1)f(x)为偶函数.
    证明如下:
    由(1)知函数f(x)定义域为R,关于关于原点对称,
    且f(-x)=1--x21+-x2=1-x21+x2=f(x),
    ∴f(x)为偶函数.
    (2)因为f(x)=1-x21+x2=-x2-1+21+x2=-1+2x2+1,
    所以0<21+x2≤2,-1<21+x2-1≤1,
    因此f(x)的值域为(-1,1].
    值域为(-1,1].

    【解析】本题考查判断函数的奇偶性,求函数的值域,属于基础题.
    (1)根据函数奇偶性的定义进行证明;
    (2)变形函数为f(x)=-1+2x2+1,由0<21+x2≤2,进一步得函数的值域.
    19.【答案】解:(1)分析命题p为真命题时:设方程x2+2ax+4a+5=0的两根为x1,x2,
    可得不等式组,即Δ=4a2-4(4a+5)>0x1+x2=-2a>0x1x2=4a+5>0
    解得-54命题¬p为真命题,a的取值范围(-∞,-54]∪[-1,+∞)
    (2)设A=(-54,-1),B=(m,7m+7),
    若q是p的充分条件,可得B是A的子集
    m<7m+7m≥-547m+7≤-1
    解得-76综上,m的取值范围是(-76,-87]
    【解析】本题考查命题的真假,充分条件与集合的关系,属于基础题.
    (1)命题p为真命题时,可得到Δ=4a2-4(4a+5)>0x1+x2=-2a>0x1x2=4a+5>0,解得-54(2)由题可知B是A的子集,则m<7m+7m≥-547m+7≤-1,解不等式组即可.
    20.【答案】解:(1)由题意可知,调整后的服务人员有200-x人,人均投入为(1+2x%)a万元/人,
    从而(200-x) (1+2x% )a≥200a,
    解得0≤x≤150.
    答:调整后服务人员最多有150人.
    (2)由题意,得(200- x) (1+2x%)a≥(m-4x%)ax
    得(200x-1)(1+x50)≥m-x25
    整理,得m≤200x+3+x50
    因为200x+3+x50≥2 200x·x50+3=7,
    当且仅当200x=x50,即x=100时等号成立,所以m≤7.
    答:m的最大值为7,此时运营人员有100人.
    【解析】本题考查基本不等式的实际应用,属于基础题.
    (1)由题得到(200-x) (1+2x% )a≥200a,解不等式即可;
    (2)由题得得(200- x) (1+2x%)a≥(m-4x%)ax,整理得到得m≤200x+3+x50,再利用基本不等式即可求解.
    21.【答案】解:(1)不等式即ax2-(2a-1)x-2<0,即(x-2)(ax+1)<0,
    当a=0时,即x-2<0,解得x<2,
    当a≠0时,由(x-2)(ax+1)=0得:x1=2,x2=-1a,
    (i)若a>0,则开口向上,-1a<2,原不等式解得-1a(ii)若-122,原不等式解得x<2或x>-1a,
    综上,当a>0时,解集为{x|-1a当a=0时,解集为{x|x<2};
    当-12-1a}.
    (2)由a>0知f(x)开口向上,对称轴是x0=a-12a,
    当x0≤-12,即0最小值为f(-12)=34a-52=-94,解得a=13;
    当x0>-12,即a>12时,
    函数f(x)在[-12,x0)单调递减,在[x0,+∞)上单调递增,
    最小值为f(x0)=-a2-6a-14a=-94,解得a=3+ 52或a=3- 52(舍),
    故a的值为13或3+ 52.
    【解析】本题考查解不等式,由函数的最值求参,属于中档题.
    (1)因式分解得到(x-2)(ax+1)<0,再对a分类讨论;
    (2)求出对称轴x0,对x0分类讨论.
    22.【答案】解:(1)f(x)= 3x-2-34x+12在[2,+∞)上是单调递减,
    证明:对任意x1,x2∈[2,+∞),且x1有f(x1)-f(x2)=( 3x1-2-34x1+12)-( 3x2-2-34x2+12),
    =3(x1-x2) 3x1-2+ 3x2-2-34(x1-x2),
    =(x1-x2)(3 3x1-2+ 3x2-2-34),
    ∵x2>x1≥2,∴ 3x1-2+ 3x2-2>4,3 3x1-2+ 3x2-2<34,
    3 3x1-2+ 3x2-2-34<0,
    由x1-x2<0,得f(x1)-f(x2)>0,所以f(x)在区间[2,+∞)上单调递减.
    (2)由题意化简得3x1-2+2-m-m 3x1-2≥-f(x2),∀x1∈[2,+∞),∃x2∈[2,+∞)
    由(1)知(-f(x)min=-f(2)=-1,
    ∴3x1-2+2-m-m 3x1-2≥-1,∀x1∈[2,+∞),
    令 3x1-2=t≥2,
    ∴t2+3-m(t+1)≥0,
    ∴m≤t2+3t+1=t+1+4t+1-2,
    ∴p(t)=t+1+4t+1-2在[2,+∞)单调递增,
    ∴p(t)min=p(2)=73,
    ∴m≤73.
    【解析】本题考查函数的单调性,函数中的恒成立问题,属于较难题.
    (1)利用作差法结合函数单调性的定义进行判断;
    (2)将题中不等式转化为3x1-2+2-m-m 3x1-2≥-1,∀x1∈[2,+∞),令 3x1-2=t,利用换元法,则m≤t2+3t+1=t+1+4t+1-2,即可得解.
    相关试卷

    山东省名校考试联盟2023-2024学年高三上学期期中检测数学试题: 这是一份山东省名校考试联盟2023-2024学年高三上学期期中检测数学试题,共14页。试卷主要包含了11等内容,欢迎下载使用。

    2023-2024学年山东省名校考试联盟高一上学期11月期中检测数学试题含答案: 这是一份2023-2024学年山东省名校考试联盟高一上学期11月期中检测数学试题含答案,共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年山东省名校考试联盟高一上学期12月阶段性检测数学试题(含解析): 这是一份2023-2024学年山东省名校考试联盟高一上学期12月阶段性检测数学试题(含解析),共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map