2024年高考数学第一轮复习精品导学案第69讲 圆锥曲线中的定点问题(学生版)+教师版
展开例1、(2023·山西·统考一模)双曲线的左、右顶点分别为,,焦点到渐近线的距离为,且过点.
(1)求双曲线的方程;
(2)若直线与双曲线交于,两点,且,证明直线过定点.
变式1、(2022·江苏·新沂市第一中学模拟预测)已知椭圆的右顶点为A(2,0),右焦点F到右准线l的距离为3.
(1)求椭圆C的标准方程;
(2)经过点F和T(7,0)的圆与直线l交于P,Q,AP,AQ分别与椭圆C交于M,N.证明:直线MN经过定点.
变式2、(2022·内蒙古赤峰·模拟预测(文))已知椭圆:的左焦点为,且离心率.
(1)求椭圆的标准方程;
(2)若点,直线(不经过点)与椭圆相交于,两点,与交于点,设直线,,的斜率分别为,,,且.证明:直线过定点,并求出该点的坐标.
变式3、(2022·广东佛山·高三期末)已知双曲线C的渐近线方程为,且过点.
(1)求C的方程;
(2)设,直线不经过P点且与C相交于A,B两点,若直线与C交于另一点D,求证:直线过定点.
题型二 圆锥曲线中的圆过定点问题
例2、(2023·江苏南通·统考一模)已知双曲线的左顶点为,过左焦点的直线与交于两点.当轴时,,的面积为3.
(1)求的方程;
(2)证明:以为直径的圆经过定点.
变式1、(2022·广东揭阳·高三期末)已知椭圆为椭圆的左、右焦点,焦距为,点在上,且面积的最大值为.
(1)求椭圆的方程;
(2)过点作直线交椭圆于两点,以为直径的圆是否恒过轴上的定点?若存在该定点,请求出的值;若不存在,请说明理由.
变式2、(2022·山东德州·高三期末)已知抛物线C的顶点是坐标原点O,对称轴为x轴,焦点为F,抛物线上点A的横坐标为1,且FA⋅OA=4.
(1)求抛物线C的方程;
(2)过抛物线C的焦点作与x轴不垂直的直线l交抛物线C于两点M,N,直线分别交直线OM,ON于点A和点B,求证:以AB为直径的圆经过x轴上的两个定点.
题型三 、 圆锥曲线中的椭圆过定点问题
例3、(2021·河北石家庄市高三二模)已知直线:与椭圆:相交于,两点,,
(1)证明椭圆过定点,并求出的值;
(2)求弦长的取值范围.
2024年高考数学第一轮复习精品导学案第72讲 圆锥曲线中的探索性问题(学生版)+教师版: 这是一份2024年高考数学第一轮复习精品导学案第72讲 圆锥曲线中的探索性问题(学生版)+教师版,共2页。学案主要包含了是否存在参数的成立问题,是否存在定点,是否存在定轨迹等问题等内容,欢迎下载使用。
2024年高考数学第一轮复习精品导学案第71讲 圆锥曲线中的最值问题(学生版)+教师版: 这是一份2024年高考数学第一轮复习精品导学案第71讲 圆锥曲线中的最值问题(学生版)+教师版,共2页。
2024年高考数学第一轮复习精品导学案第70讲 圆锥曲线中的定值问题(学生版)+教师版: 这是一份2024年高考数学第一轮复习精品导学案第70讲 圆锥曲线中的定值问题(学生版)+教师版,共2页。学案主要包含了圆锥曲线中面积为定值问题,圆锥曲线中线段为定值问题,圆锥曲线中斜率为定值问题等内容,欢迎下载使用。