搜索
    上传资料 赚现金
    2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(学生版)+教师版
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(教师版).docx
    • 学生
      2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(学生版).docx
    2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(学生版)+教师版01
    2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(学生版)+教师版02
    2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(学生版)+教师版03
    2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(学生版)+教师版01
    2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(学生版)+教师版02
    还剩6页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(学生版)+教师版

    展开
    这是一份2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(学生版)+教师版,共2页。学案主要包含了由数列公共项构成新数列,由数列的插入项构成新数列等内容,欢迎下载使用。

    题型选讲
    题型一 由数列公共项构成新数列
    例1、(2023·黑龙江哈尔滨·哈师大附中统考三模)已知数列的前项和为,满足,等差数列中.
    (1)求和的通项公式;
    (2)数列与的共同项由小到大排列组成新数列,求数列的前20的积.
    【答案】(1),;
    (2).
    【详解】(1),,当时,,两式相减得:,
    即,而,解得,因此数列是首项为3,公比为3的等比数列,,
    在等差数列中,由,得,解得,
    则公差,,
    所以和的通项公式分别为,.
    (2)令数列的第m项与数列的第k项相同,即,
    于是,
    显然是4的正整数倍,要成立,
    当且仅当为正偶数,因此数列与的共同项为,即,
    所以.
    变式1、(2022·山东日照·高三期末)数列中,已知,数列{bn}满足,点在直线上.
    (1)求数列的通项公式;
    (2)数列中满足:①;②存在使的项组成新数列{cn},求数列{cn}所有项的和.
    【答案】(1),
    (2)341
    【解析】
    【分析】
    (1) 由与的关系式可得通项公式,再由点与直线的关系可得的通项公式;
    (2) 找出满足条件的共同项再求和即可.
    (1)
    ,,,
    ①,,,满足①,
    所以是以1为首项2为公比的等比数列,
    所以.
    因为点在直线上,
    所以,,是首项为1公差为3的等差数列,所以.
    (2)
    且满足的中项一定是除3余1的数,即形如的数,
    同时满足,所以,,,,
    数列{cn}所有项的和为:.
    变式2、(2022·山东德州·高三期末)已知等差数列中,,首项,其前四项中删去某一项后(按原来的顺序)恰好是等比数列的前三项.
    (1)求的通项公式;
    (2)设中不包含的项按从小到大的顺序构成新数列,记的前n项和为,求.
    【答案】(1)
    (2)
    【解析】
    【分析】
    (1)根据题意求出,从而求出通项公式;(2)先求出的前25项和,再减去前25项中含有数列中的项的和,求出答案.
    (1)
    等差数列中,,,其前四项,,,中删去某一项后(按原来的顺序)恰好是等比数列的前三项.
    根据题意,当删去数列中第三项时,
    满足,解得;
    删去时,满足,此方程无解,不满足题意,同理可证,删除与时,均不满足题意;
    故;
    所以,
    (2)
    已知等差数列中,,
    数列中的项为:4,8,16,32,64,128,256,…,
    所以.
    故数列的前25项和为,
    数列的前25项中含有数列中的项的和为,
    所以.
    题型二 由给定数列的项数构成新数列
    例2、(2023·黑龙江·黑龙江实验中学校考一模)已知数列,前n项和为,且满足,,,,,等比数列中,,且,成等差数列.
    (1)求数列和的通项公式;
    (2)记为区间中的整数个数,求数列的前n项和.
    【答案】(1),;(2)
    【分析】(1)根据,,得到为等差数列,根据通项公式和求和公式基本量计算出首项和公差,得到的通项公式,再利用等比数列通项公式基本量计算出和公比,求出的通项公式;
    (2)在第一问的基础上得到,分组求和,结合等差数列和等比数列求和公式求出答案.
    【详解】(1),,,
    即,,,
    故为等差数列,设公差为,
    故,,
    解得:,,
    所以,
    设等比数列的公比为,,
    因为,成等差数列,所以,
    即,与联立得:或0(舍去),
    且,故,
    (2)由题意得:为中的整数个数,
    故,
    所以
    .
    变式1、(2023·江苏徐州·徐州市第七中学校考一模)已知等比数列的前n项和为(b为常数).
    (1)求b的值和数列的通项公式;
    (2)记为在区间中的项的个数,求数列的前n项和.
    【答案】(1);;(2)
    【分析】(1)依题意等比数列的公比不为1,再根据等比数列前项和公式得到,即可得到且,从而求出、,即可得解;
    (2)首先令,,即可求出的取值范围,从而求出,即可得到,再利用错位相减法求和即可;
    【详解】(1)解:由题设,显然等比数列的公比不为1,
    若的首项、公比分别为、,则,
    ∴且,所以,
    故的通项公式为.
    当时,;
    (2)解:令,,解得,所以
    数列在中的项的个数为,则,所以,
    ∵,①
    ∵②
    两式相减得∴.

    变式2、(2023·江苏泰州·泰州中学校考一模)已知数列是等差数列,,且,,成等比数列.给定,记集合的元素个数为.
    (1)求,的值;
    (2)求最小自然数n的值,使得.
    【答案】(1),;;(2)11
    【分析】(1)利用等比数列的性质求得公差,得通项公式,写出时的集合可得元素个数,即;
    (2)由(1)可得,然后分组求和法求得和,用估值法得时和小于2022,时和大于2022,由数列的单调性得结论.
    【详解】(1)设数列的公差为,由,,成等比数列,得,
    ,解得,所以,
    时,集合中元素个数为,
    时,集合中元素个数为;
    (2)由(1)知,

    时,=2001<2022,时,=4039>2022,
    记,显然数列是递增数列,
    所以所求的最小值是11.
    题型三 由数列的插入项构成新数列
    例3、(2022·山东烟台·一模)己知等差数列的前n项和为,,.
    (1)求的通项公式;
    (2)保持数列中各项先后顺序不变,在与之间插入个1,使它们和原数列的项构成一个新的数列,记的前n项和为,求的值.
    【解析】 (1)设的公差为d,由已知,.
    解得,d=2.所以;
    (2)因为与之间插入个1,
    所以在中对应的项数为

    当k=6时,,当k=7时,,
    所以,,且.
    因此
    .
    变式1、(2022·青岛期初考试)已知等差数列{An}的首项A1为4,公差为6,在{An}中每相邻两项之间都插入两个数,使它们和原数列的项一起构成一个新的等差数列{an}.
    (1)求数列{an}的通项公式;
    (2)若EQ a\S\DO(k\S\DO(1)),EQ a\S\DO(k\S\DO(2)),…,EQ a\S\DO(k\S\DO(n)),…是从{an}中抽取的部分项按原来的顺序排列组成的一个等比数列,eq k\s\d(1)=1,k\s\d(2)=5,令eq b\s\d(n)=2nk\s\d(n)+2n,求数列{bn}的前n项和Tn.
    【解析】
    (1)设数列{an}的公差为d,
    由题意可知,eq a\s\d(1)=A\s\d(1)=4,a\s\d(4)=A2=4+6=10,
    所以eq a\s\d(4)=4+(4-1)×d=10,
    解得d=2,
    所以eq a\s\d(n)=a\s\d(1)+(n-1)d=4+(n-1)×2=2n+2;
    (2)设等比数列EQ a\S\DO(k\S\DO(1)),EQ a\S\DO(k\S\DO(2)),…,EQ a\S\DO(k\S\DO(n)),…的公比为q,
    则q=EQ \F(a\S\DO(k\S\DO(2)),a\S\DO(k\S\DO(1)))=EQ \F(a\S\DO(5),a\S\DO(1))=EQ \F(12,4)=3,所以EQ a\S\DO(k\S\DO(n))=eq 4·3\s\up6(n-1),
    又EQ a\S\DO(k\S\DO(n))=eq 2k\s\d(n)+2,
    所以eq 2k\s\d(n)+2=4·3\s\up6(n-1),k\s\d(n)=2·3\s\up6(n-1)-1,
    eq ∴b\s\d(n)=2nk\s\d(n)+2n=4n·3\s\up6(n-1),
    因为eq T\s\d(n)=4×3\s\up6(0)+8×3\s\up6(1)+12×3\s\up6(2)+…+4n·3\s\up6(n-1),
    所以eq 3T\s\d(n)=4×31eq +8×3\s\up6(2)+12×3\s\up6(3)+…+4(n-1)·3\s\up6(n-1)+4n·3\s\up6(n),
    相减得:eq -2T\s\d(n)=4×3\s\up6(0)+4×3\s\up6(1)+4×3\s\up6(2)+…+4·3\s\up6(n-1)-4n·3\s\up6(n)
    eq =\f(4(1-3\s\up6(n)),1-3)-4n·3\s\up6(n)=-2(2n-1)·3\s\up6(n)-2
    eq ∴T\s\d(n)=(2n-1)·3\s\up6(n)+1
    变式2、(2022·广东东莞·高三期末)设等差数列的前项和为,且,.
    (1)求数列的通项公式;
    (2)在任意相邻两项和之间插入个1,使它们和原数列的项构成一个新的数列,求数列的前200项的和.
    【答案】(1)
    (2)
    【解析】
    【分析】
    (1)设等差数列的公差为,由求解;
    (2)方法一:由题意得到,的各项为,再确定数列的项求解;方法二:由在数列中,前面(包括)共有项,令,确定数列的项求解.
    (1)
    解:设等差数列的公差为,
    由题得,即,
    整理得,
    解得.
    所以.
    (2)
    方法一:由题意可知,的各项为
    即,
    因为,
    且,
    所以,,,,,,会出现在数列的前200项中,
    所以前面(包括)共有126+7=133项,所以后面(不包括)还有67个1,
    所以,
    方法二:在数列中,前面(包括)共有项,
    令,则,
    所以,,,,,,会出现在数列的前200项中,
    所以前面(包括)共有126+7=133项,所以后面(不包括)还有67个1,
    所以,
    相关学案

    2024年高考数学第一轮复习精品导学案第46讲 数列中的奇偶项问题(学生版)+教师版: 这是一份2024年高考数学第一轮复习精品导学案第46讲 数列中的奇偶项问题(学生版)+教师版,共2页。学案主要包含了分段函数的奇偶项求和,含有n类型,an+an+1 类型等内容,欢迎下载使用。

    2024年高考数学第一轮复习精品导学案第45讲 数列的综合运用(学生版)+教师版: 这是一份2024年高考数学第一轮复习精品导学案第45讲 数列的综合运用(学生版)+教师版,共2页。

    2024年高考数学第一轮复习精品导学案第44讲 数列的求和(学生版)+教师版: 这是一份2024年高考数学第一轮复习精品导学案第44讲 数列的求和(学生版)+教师版,共2页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年高考数学第一轮复习精品导学案第47讲 数列中的新数列问题(学生版)+教师版
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map