【期中真题】河北省保定市重点高中2022-2023学年高三上学期11月期中数学试题.zip
展开2022—2023学年上期高三期中考试
数学试题
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 命题“,”的否定为( )
A. , B. ,
C. , D. ,
2. 已知集合,,则( )
A. B. C. D.
3. 如图,已知四边形是圆柱的轴截面,,在圆柱内部有两个圆锥(圆锥和圆锥),若,则圆锥与圆锥的侧面积之比为( )
A. B. C. D.
4. 已知向量,,若,则向量在向量上的投影向量为( )
A. B. C. D.
5. 已知函数的图象如图所示,则的表达式可以为( )
A. B.
C. D.
6. 已知四边形是椭圆的内接四边形(即四边形的四个顶点均在椭圆上),且四边形为矩形,则四边形的面积的最大值为( )
A. B. C. D.
7. 国家于2021年8月20日表决通过了关于修改人口与计划生育法的决定,修改后的人口计生法规定,国家提倡适龄婚育、优生优育,一对夫妻可以生育三个子女,该政策被称为三孩政策.某个家庭积极响应该政策,一共生育了三个小孩,假定生男孩和生女孩是等可能的,记事件:该家庭既有男孩又有女孩;事件:该家庭最多有一个男孩;事件:该家庭最多有一个女孩.则下列说法正确的是( )
A. 事件与事件互斥但不对立 B. 事件与事件互斥且对立
C. 事件与事件相互独立 D. 事件与事件相互独立
8. 已知函数满足:,对任意恒成立.若成立,则实数的取值范围是( )
A. B.
C. D.
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9. 为了增强学生体育锻炼的积极性,某中学需要了解性别因素与学生对体育锻炼的喜好是否有影响,为此对学生是否喜欢体育锻炼的情况进行普查.得到下表:
| 性别 | 合计 | |
男性 | 女性 | ||
喜欢 | 280 | p | 280+p |
不喜欢 | q | 120 | 120+q |
合计 | 280+q | 120+p | 400+p+q |
附:,.
0.15 | 010 | 0.05 | 0.025 | 0.010 | 0.00l | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
已知男生喜欢该项运动的人数占男生人数的,女生喜欢该项运动的人数占女生人数的,则下列说法正确的是( )
A. 列联表中的值为,的值为
B. 随机对一名学生进行调查,此学生有的可能喜欢该项运动
C. 有的把握认为学生的性别与其对该项运动的喜好有关系
D. 没有的把握认为学生的性别与其对该项运动的喜好有关系
10. 已知函数,,则( )
A. 对于任意,函数有零点
B. 对于任意,存在,函数恰有一个零点
C. 对于任意,存在,函数恰有二个零点
D. 存在,函数恰有三个零点
11. 已知分别为圆与圆上的两个动点,为直线上的一点,则( )
A. 的最小值为
B. 的最小值为
C. 最大值为
D. 的最小值为
12. 定义在上函数的导函数为,且恒成立,则( )
A. B.
C. D.
三、填空题:本大题共4小题,每小题5分,共20分.
13. 的二项展开式的常数项为_______
14. 从数字中任意取出两个数字,这两个数字不是连续的自然数的概率是__.
15. 已知函数()满足,若函数与的图象的交点为(),则__.
16. 设是椭圆()的右焦点,为坐标原点,过作斜率为的直线交椭圆于,两点(点在轴上方),过作的垂线,垂足为,且,则该椭圆的离心率是__.
四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17 已知等差数列和等比数列满足,,,.
(1)求数列,的通项公式:
(2)设数列中不在数列中的项按从小到大的顺序构成数列,记数列的前项和为,求.
18. 在中,角A,B,C所对的边分别为a,b,c,且满足.
(1)求角A;
(2)已知,M点为BC的中点,N点在线段AC上且,点P为AM与BN的交点,求的余弦值.
19. 2020年1月15日教育部制定出台了《关于在部分高校开展基础学科招生改革试点工作的意见》(也称“强基计划”),《意见》宣布:2020年起不再组织开展高校自主招生工作,改为实行强基计划.强基计划主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.据悉强基计划的校考由试点高校自主命题,校考过程中通过笔试后才能进入面试环节.已知甲、乙两所大学的笔试环节都设有三门考试科目且每门科目是否通过相互独立,若某考生报考甲大学,每门科目通过的概率均为,该考生报考乙大学,每门科目通过的概率依次为,其中.
(1)若,分别求出该考生报考甲、乙两所大学在笔试环节恰好通过一门科目的概率;
(2)强基计划规定每名考生只能报考一所试点高校,若以笔试过程中通过科目数的数学期望为依据作出决策,当该考生更希望通过乙大学的笔试时,求的取值范围.
20. 如图①所示,长方形中,,,点是边靠近点三等分点,将△沿翻折到△,连接,,得到图②的四棱锥.
(1)求四棱锥的体积的最大值;
(2)设的大小为,若,求平面和平面夹角余弦值的最小值.
21. 已知双曲线的离心率为,左、右顶点分别为M,N,点满足.
(1)求双曲线C的方程;
(2)过点P的直线l与双曲线C交于A,B两点,直线OP与直线AN交于点D.设直线MB,MD的斜率分别为,求证:为定值.
22. 已知函数在处取得极值0.
(1)求实数,的值;
(2)若关于的方程在区间上恰有2个不同的实数解,求的取值范围;
(3)设函数,若,总有成立,求的取值范围.
【期中真题】河北省保定市部分学校2021-2022学年高二上学期期中数学试题.zip: 这是一份【期中真题】河北省保定市部分学校2021-2022学年高二上学期期中数学试题.zip,文件包含期中真题河北省保定市部分学校2021-2022学年高二上学期期中数学试题原卷版docx、期中真题河北省保定市部分学校2021-2022学年高二上学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
【期中真题】陕西省部分重点高中2022-2023学年高三上学期11月联考文科数学试题.zip: 这是一份【期中真题】陕西省部分重点高中2022-2023学年高三上学期11月联考文科数学试题.zip,文件包含期中真题陕西省部分重点高中2022-2023学年高三上学期11月联考文科数学试题原卷版docx、期中真题陕西省部分重点高中2022-2023学年高三上学期11月联考文科数学试题解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
【期中真题】辽宁省实验中学2022-2023学年高三上学期期中数学试题.zip: 这是一份【期中真题】辽宁省实验中学2022-2023学年高三上学期期中数学试题.zip,文件包含期中真题辽宁省实验中学2022-2023学年高三上学期期中数学试题原卷版docx、期中真题辽宁省实验中学2022-2023学年高三上学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。