![【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题05 一元二次方程的应用(十大题型).zip01](http://img-preview.51jiaoxi.com/2/3/14935462/0-1698363119110/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题05 一元二次方程的应用(十大题型).zip02](http://img-preview.51jiaoxi.com/2/3/14935462/0-1698363119175/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题05 一元二次方程的应用(十大题型).zip03](http://img-preview.51jiaoxi.com/2/3/14935462/0-1698363119199/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题05 一元二次方程的应用(十大题型).zip01](http://img-preview.51jiaoxi.com/2/3/14935462/1-1698363130639/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题05 一元二次方程的应用(十大题型).zip02](http://img-preview.51jiaoxi.com/2/3/14935462/1-1698363130657/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题05 一元二次方程的应用(十大题型).zip03](http://img-preview.51jiaoxi.com/2/3/14935462/1-1698363130673/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题03 四边形中常见的几种模型(六大题型).zip 试卷 5 次下载
- 【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题04 一元二次方程及其解法(七大题型).zip 试卷 2 次下载
- 【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题06 求概率的几种常见方法(五大题型).zip 试卷 2 次下载
- 【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题07 概率的实际应用(四大题型).zip 试卷 3 次下载
- 【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题08 相似图形的相关概念及性质(五大题型).zip 试卷 2 次下载
【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题05 一元二次方程的应用(十大题型).zip
展开专题05 一元二次方程的应用
图形问题
1.(2022秋·广东珠海·九年级珠海市文园中学校考期中)在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,设金色纸边的宽为,那么满足的方程是( )
A. B.
C. D.
2.(2022秋·浙江宁波·九年级校考期中)如图,在足够大的空地上有一段长为a米的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.若设的长度为x米,矩形菜园面积为S平方米.
(1)写出S与x的关系式(不要求写出自变量的取值范围);
(2)若,所围成的矩形菜园的面积为450平方米,求所利用旧墙的长;
(3)求矩形菜园面积的最大值.
3.(2022秋·北京·九年级校考期中)如图,用一条长的绳子围成矩形,设边的长为.
(1)边的长为______m,矩形的面积为______(均用含的代数式表示);
(2)矩形的面积是否可以是?请给出你的结论,并用所学的方程或者函数知识说明理由.
增长率问题
4.(2020秋·福建厦门·九年级厦门市第五中学校考期中)共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为( )
A.1000(1+x)2=1000+440 B.1000(1+x)2=440
C.440(1+x)2=1000 D.1000(1+2x)=1000+440
5.(2022秋·江苏南通·九年级统考期中)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(),则 (用百分数表示).
6.(2022秋·北京西城·九年级北京市第三十五中学校考期中)为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工作.2020年3月,国内某企业口罩出口订单额为1000万元,2020年5月该企业口罩出口订单额为1440万元.求该企业2020年3月到5月口罩出口订单额的月平均增长率.
营销问题
7.(2022秋·福建泉州·九年级福建省惠安第一中学校联考期中)某种手链工艺品每串的盈利与手链上的珍珠个数有一定的关系:每串3粒珍珠时,平均每粒珍珠盈利40元;若每串增加一粒珍珠,则每粒珍珠盈利就减少5元.要使每串手链的盈利达到150元,每串应增加多少粒珍珠?设每串增加x粒珍珠,则下列方程正确的是( ).
A. B.
C. D.
8.(2022秋·江苏扬州·九年级校联考期中)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元/件的小商品进行直播销售,如果按每件50元销售,那么可卖出200件.通过市场调查发现,售价每增加1元,销售量减少10件.为了尽快减少库存,并且商店可盈利2160元.问:该商店销售这种商品每件售价多少元?
9.(2023春·湖南长沙·九年级校联考期中)春节是中国的传统节日,每年元旦节后是购物的高峰期,2023年元月某水果商从农户手中购进A、B两种红富士苹果,其中A种红富士苹果进货价为28元/件,销售价为42元/件,其中B种红富士苹果进货价为22元/件,销售价为34元/件.(注:利润销售价进货价)
(1)水果店第一次用720元购进A、B两种红富士苹果共30件,求两种红富士苹果分别购进的件数;
(2)第一次购进的红富士苹果售完后,该水果店计划再次购进A、B两种红富士苹果共80件(进货价和销售价都不变),且进货总费用不高于2000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
(3)春节临近结束时,水果店发现B种红富士苹果还有大量剩余,决定对B种红富士苹果调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B种红富士苹果平均每天销售利润为90元?
数字问题
10.(2020秋·江苏苏州·九年级统考期中)一个两位数的两个数字的和为9,把这个两位数的个位数字与十位数字互换得到一个新的两位数,它与原两位数的积为1458,设原两位数的个位数字为x,则可列方程( )
A. B.
C. D.
11.(2018·山东青岛·九年级统考期中)一个两位数,它的数值等于它的个位上的数字的平方的3倍,它的十位数字比个位数字大2.若设个位数字为x,列出求该两位数的方程式为 .
12.(2020秋·广东茂名·九年级校联考期中)两个连续偶数的平方和是100,求这两个数.若设最小的数为x,则可列方程为 .
工程问题
13.(2022秋·四川达州·九年级校考期中)公安部交管局部署“一盔一带”安全守护行动,带动了市场头盔的销量.某头盔经销商5至7月份统计,某品牌头盔5月份销售2250个,7月份销售3240个,且从5月份到7月份销售量的月增长率相同.请解决下列问题.
(1)求该品牌头盔销售量的月增长率;
(2)为了达到市场需求,某工厂建了一条头盔生产线生产头盔,经过一段时间后,发现一条生产线最大产能是900个/天,但如果每增加一条生产线,每条生产线的最大产能将减少30个/天,现该厂要保证每天生产头盔3900个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?
14.(2022秋·重庆云阳·九年级校联考期中)年初,武汉爆发了新型冠状病毒引起的肺炎,并迅速在全国传染开来,与此同时医护人员一直坚守在抗击肺炎的前线,为我们保驾护航!罗曼·罗兰说:“凡是行为善良与高尚的人,定能因之而担当患难.”他们是最可亲可敬的人!由此,医疗物资护目镜的需求量大大增加,两江新区某护目镜生 产厂家自正月初三起便要求全体员工提前返岗,在接到单位的返岗通知后,员工们都毫无怨言,快速回到了自己的工作岗位,用自己的实际行动践行着一份责任和担当.已知该厂拥有两条不同的护目镜加工生产线.原计划生产线每小时生产护目镜个,生产线每小时生产护目镜个.
(1)若生产线一共工作小时,且生产护目镜的总数量不少于个,则生产线至少生产护目镜多少小时?
(2)原计划生产线每天均工作小时,但现在为了尽快满足我市护目镜的需求,两条生产线每天均比原计划多工作了相同的小时数,但因为机器损耗及人员不足原因,生产线每增加小时,该生产线每小时的产量将减少个,生产线每增加小时,该生产线每小时的产量将减少个.这样一天生产的护目镜将比原计划多个,求该厂实际每天生产护目镜的时间.
15.(2022秋·重庆合川·九年级校考期中)甲、乙两工程队共同承建某高速路隧道工程,隧道总长2000米,甲、乙分别从隧道两端向中间施工,计划每天各施工6米.因地质情况不同,两支队伍每合格完成1米隧道施工所需成本不一样.甲每合格完成1米,隧道施工成本为6万元;乙每合格完成1米,隧道施工成本为8万元.
(1)若工程结算时乙总施工成本不低于甲总施工成本的,求甲最多施工多少米?
(2)实际施工开始后因地质情况比预估更复杂,甲乙两队每日完成量和成本都发生变化.甲每合格完成1米隧道施工成本增加m万元时,则每天可多挖m米,乙因特殊地质,在施工成本不变的情况下,比计划每天少挖m米,若最终每天实际总成本比计划多(11m-8)万元,求m的值.
行程问题
16.(2022秋·湖北荆州·九年级统考期中)《九章算术》中有一题:“今有二人同立,甲行率六,乙行率四,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,甲、乙各走了多少步?”请问乙走的步数是( )
A.36 B.26 C.24 D.10
17.(2019秋·河南郑州·九年级校考期中)某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如下表.与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为x(0<x<0.5).
注:步数×平均步长=距离.
(1)根据题意完成表格填空;
(2)求x的值;
(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.
18.(2022秋·重庆·九年级西南大学附中校考期中)小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.
(1)求返回时A、B两地间的路程;
(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟.
运动类问题
19.(2022秋·广东韶关·九年级翁源县龙仙第二中学校考期中)如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )
A.2秒钟 B.3秒钟 C.3秒钟或5秒钟 D.5秒钟
20.(2021秋·江苏无锡·九年级无锡市江南中学校考期中)如图,将边长为4的正方形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移得到△A′B′C′,若两个三角形重叠部分的面积为3,则它移动的距离AA′等于 ;移动的距离AA′等于 时,两个三角形重叠部分面积最大.
21.(2022秋·陕西西安·九年级校考期中)如图,已知A、B、C、D为矩形的四个顶点,,,动点P、Q分别从点A、C同时出发,点P以的速度向点B移动,一直到点B为止,点Q以的速度向点D移动.问:
(1)P、Q两点从出发开始几秒时,四边形的面积为?
(2)几秒时点P点Q间的距离是10厘米?
(3)P,Q两点间距离何时最小?
循环问题
22.(2022秋·北京朝阳·九年级和平街第一中学校考期中)根据下列问题列方程,并将所列方程化成一元二次方程的一般形式.
问题:参加一次聚会的每两人都握了一次手,所有人共握手10次,共有多少人参加聚会?
设有x人参加聚会,所列方程为: .
23.(2022秋·云南昭通·九年级统考期中)新年到了,为增进同学友谊,某班主任规定本班同学间,每两个人必须相互通电话1次
(1)若本班人数为20,则共通话________次,若本班人数为(,且为正整数),则共通话________次;
(2)若同学们共通话1225次,求该班同学的人数;
(3)王峰同学由打电话问题想到了一个数学问题:若线段上共有个点(不含端点、),线段总数为多少呢?请直接写出结论.
传播问题
24.(2022秋·全国·九年级期中)世界卫生组织关于埃博拉疫情报告称,在病毒传播中,每轮平均1人会感染x个人,若2个人患病,则经过两轮感染就共有162人患病.求x的值( )
A.9 B.8 C.7 D.6
25.(2022秋·湖南张家界·九年级统考期中)接种疫苗是阻断新冠病毒传播的有效途径,为保障人民群众的身体健康,我市启动新冠疫苗加强针接种工作,已知今年3月甲接种点平均每天接种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人接种加强针.
(1)求3月平均每天分别有多少人前往甲、乙两接种点接种加强针?
(2)4月份,甲接种点平均每天接种加强针的人数比3月少10m人,乙接种点平均每天接种加强针的人数比3月多30%,在m天期间,甲、乙两接种点共有2250人接种加强针,求m的值.
26.(2021秋·福建三明·九年级统考期中)为了响应“践行核心价值观,传递青春正能量”的号召,小颖决定走入社区号召大家参加“传递正能量志愿服务者”.假定从一个人开始号召,每一个人每周能够号召相同的个人参加,被号召参加的人下一周会继续号召,两周后,将有121人被号召成为“传递正能量志愿服务者”.
(1)求出的值;
(2)经过计算后,小颖、小红、小丽三人开始发起号召,但刚刚开始,她们就发现了问题,实际号召过程中,不是每一次号召都可以成功,而她们三人的成功率也各不相同,已知小红的成功率比小颖的两倍少10%,第一周后小丽比小颖多号召成功4人,三人一共号召成功19人,其中小颖号召成功了人.求出值,并分别求出她们三人号召的成功率.
27.(2020秋·山东济南·九年级统考期中)2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.世界卫生组织提出:如果1人传播10人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为”超级传播者”.如果某地区有1人不幸成为新冠肺炎病毒的携带者,假设一个病毒携带者每轮传染的人数相同,经过两轮传染后共有81人成为新冠肺炎病毒的携带者.
(1)请判断最初的这名病毒携带者是”超级传播者”吗?求他每轮传染的人数;
(2)若不加以控制传染渠道,经过3轮传染,新冠肺炎病毒的携带者共有多少人?
图表信息问题
28.(2018秋·江苏苏州·九年级统考期中)某旅行社一则旅游消息如下:
旅游人数 | 收费标准 |
不超过人 | 人均收费元 |
超过人 | 每增加一人,人均收费减少元,但人均收费不低于元 |
(1)甲公司员工分两批参加该项旅游,分别支付给旅行社元和元,甲公司员工有__________人.
(2)乙公司员工一起参加该项旅游,支付给旅行社元,乙公司员工多少人?
29.(2022秋·河南南阳·九年级统考期中)如图是2022年5月份的日历,在日历表上可以用一个方框圈出的四个数.
(1)若圈出的四个数中,最小的数为,则最大的数为______(用含的代数式表示);
(2)若圈出的四个数中,最小数与最大数的乘积为153,求这个最小数.
30.(2021秋·河北唐山·九年级统考期中)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.
(1)当时,请直接写出的值;
(2)当时,求的值.
31.(2010秋·江苏常州·九年级统考期中)某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是
A. B.
C. D.
32.(2021秋·湖南衡阳·九年级衡阳市实验中学校考期中)今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有( )
A.9人 B.10人 C.11人 D.12人
33.(2020秋·重庆沙坪坝·九年级重庆八中校考期中)如图,在中,,.点是上一点,连接,将沿折叠至.连接,,平分交于点.若,则的长为( )
A. B. C. D.
34.(2023春·重庆江津·九年级校联考期中)将进货价格为35元的商品按单价40元售出时.能卖出200个.已知该商品单价每上涨1元.其销售量就减少5个.设这种商品的售价上涨x元时,获得的利润为1870元,则下列关系式正确的是( )
A. B.
C. D.
35.(2020秋·山东临沂·九年级统考期中)在中,,厘米,厘米,点P从点A开始沿AB边向B点以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,如果点P,Q分别从A,B两点同时出发,则经过 秒后,P,Q两点间距离为厘米.
36.(2019秋·江西赣州·九年级统考期中)如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为 cm.
37.(2021秋·陕西商洛·九年级校考期中)解答:
(1)问题提示:如图,在等腰直角三角形中,,为的中点,为上一点,将射线绕点顺时针旋转90°交于点,则与的数量关系为____________.
(2)问题探究:
如图,在等腰三角形中,,为的中点,为上一点,将射线绕点顺时针旋转45°交于点,则与的数量关系是否改变,请说明理由.
(3)问题解决:
如图,为正方形对角线的交点,为的中点,为线段延长线上一点,将射线绕点顺时针旋转90°交线段的延长线于点,若,当的面积为时,求的长.
38.(2022春·重庆渝北·九年级校考期中)某“5A”景区决定在“5.1”劳动节期间推出优惠套餐,预售“亲子两人游”套票和“家庭三人行”套票,预售中的“家庭三人行”套票的价格是“亲子两人游”套票的2倍.
(1)若“亲子两人游”套票的预售额为21000元,“家庭三人行”套票的预售额为10500元,且“亲子两人游”的销售量比“家庭三人行”的套票多450套,求“亲子两人游”套票的价格.
(2)套票在出售当天计划推出“亲子两人游”套票1600张,“家庭三人行”套票400张,由于预售的火爆,景区决定将“亲子两人行”套票的价格(1)中价格的基础上增加元,而“家庭三人行”套票在(1)中“家庭三人行”套票票价上增加了a元,结果“亲子两人游”套票的销量比计划少32a套,“家庭三人行”套票的销售量与计划保持一致,最终实际销售额和计划销售额相同,求a的值.
39.(2021秋·福建龙岩·九年级统考期中)如图所示,四边形ABCD为矩形,AB=6cm,AD=4cm,若点Q从A点出发沿AD以1cm/s的速度向D运动,P从B点出发沿BA以2cm/s的速度向A运动,如果P、Q分别同时出发,当一个点到达终点时,另一点也同时停止.设运动的时间为t(s).
(1)当t为何值时,△PAQ为等腰三角形?
(2)当t为何值时,△APD的面积为6cm2?
(3)五边形PBCDQ的面积能否达到20cm2?若能,请求出t的值;若不能,请说明理由.
(4)当t为何值时,P、Q两点之间的距离为cm?
【期中真题】(人教版)2023-2024学年七年级数学上册 期中真题分类专题汇编 专题05整式的加减(6类经典题型优选提升).zip: 这是一份【期中真题】(人教版)2023-2024学年七年级数学上册 期中真题分类专题汇编 专题05整式的加减(6类经典题型优选提升).zip,文件包含期中真题人教版2023-2024学年七年级数学上册期中真题分类专题汇编专题05整式的加减原卷版docx、期中真题人教版2023-2024学年七年级数学上册期中真题分类专题汇编专题05整式的加减解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题10 概率(3类经典题型 优选提升).zip: 这是一份【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题10 概率(3类经典题型 优选提升).zip,文件包含期中真题2023-2024学年九年级数学上册期中真题分类专题汇编专题10概率原卷版docx、期中真题2023-2024学年九年级数学上册期中真题分类专题汇编专题10概率解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题07 旋转(4类经典题型 优选提升).zip: 这是一份【期中真题】2023-2024学年九年级数学上册 期中真题分类专题汇编 专题07 旋转(4类经典题型 优选提升).zip,文件包含期中真题2023-2024学年九年级数学上册期中真题分类专题汇编专题07旋转原卷版docx、期中真题2023-2024学年九年级数学上册期中真题分类专题汇编专题07旋转解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。