所属成套资源:2024年高考数学第一轮试卷【精品复习资料】
2024年数学高考大一轮复习第九章 §9.11 圆锥曲线中求值与证明问题
展开
这是一份2024年数学高考大一轮复习第九章 §9.11 圆锥曲线中求值与证明问题,共3页。试卷主要包含了椭圆C,如图,已知抛物线Γ,已知双曲线C等内容,欢迎下载使用。
1.(2023·晋中模拟)椭圆C:+=1(a>b>0)经过点P,且两焦点与短轴的两个端点的连线构成一个正方形.(1)求椭圆C的方程;(2)过椭圆C的右焦点F作直线l交C于A,B两点,且=2,求|AB|. 2.(2022·郑州模拟)如图,已知抛物线Γ:y2=8x的焦点为F,准线为l,O为坐标原点,A为抛物线Γ上一点,直线AO与l交于点C,直线AF与抛物线Γ的另一个交点为B.(1)证明:直线BC∥x轴;(2)设准线l与x轴的交点为E,连接BE,且BE⊥BF.证明:||AF|-|BF||=8. 3.(2023·南通调研)在平面直角坐标系xOy中,已知离心率为的椭圆C:+=1(a>b>0)的左、右顶点分别是A,B,过右焦点F的动直线l与椭圆C交于M,N两点,△ABM的面积最大值为2.(1)求椭圆C的标准方程;(2)设直线AM与定直线x=t(t>2)交于点T,记直线TF,AM,BN的斜率分别是k0,k1,k2,若k1,k0,k2成等差数列,求实数t的值. 4.(2022·新高考全国Ⅱ)已知双曲线C:-=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为-的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立.①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.
相关试卷
这是一份2024年数学高考大一轮复习第九章 §9.11 圆锥曲线中求值与证明问题,共4页。
这是一份高考数学第一轮复习第九章 §9.11 圆锥曲线中定点与定值问题,共10页。试卷主要包含了已知P在抛物线C,已知椭圆C等内容,欢迎下载使用。
这是一份高考数学第一轮复习第九章 §9.9 圆锥曲线中求值与证明问题,共12页。试卷主要包含了记M的轨迹为C等内容,欢迎下载使用。